cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371581 G.f. satisfies A(x) = ( 1 + x*A(x)^(5/2) / (1 - x*A(x)) )^2.

Original entry on oeis.org

1, 2, 13, 108, 1018, 10352, 110724, 1227752, 13986369, 162708728, 1924866345, 23085868814, 280060995369, 3430479393210, 42369377446083, 527064922683286, 6597825455023465, 83050276697808472, 1050551595788997356, 13347641275527720048, 170259412138463630535
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=5, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A365192.

A365147 G.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x)) )^3.

Original entry on oeis.org

1, 3, 24, 244, 2802, 34629, 449509, 6043716, 83433402, 1175735326, 16843576440, 244578817557, 3591620791296, 53247623771787, 795901064582970, 11981065741802125, 181478799047422047, 2763977213867989929, 42301686984305340008
Offset: 0

Views

Author

Seiichi Manyama, Aug 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=1, t=3) = sum(k=0, n, binomial(t*(n+k+1), k)*binomial(n+(s-1)*k-1, n-k)/(n+k+1));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^2 / (1 - x*A(x))^s )^t, then a(n) = Sum_{k=0..n} binomial(t*(n+k+1),k) * binomial(n+(s-1)*k-1,n-k)/(n+k+1).

A371582 G.f. satisfies A(x) = ( 1 + x*A(x)^3 / (1 - x*A(x)) )^2.

Original entry on oeis.org

1, 2, 15, 146, 1623, 19526, 247516, 3256118, 44037023, 608484766, 8552832116, 121908218724, 1757915510695, 25598937436696, 375916184707142, 5560517754432772, 82774606577536376, 1239110145377709862, 18641533742708676711, 281697878640036748684
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=2, s=1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) / (1 - x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(n+(s-1)*k-1,n-k)/(t*k+u*(n-k)+r).
Showing 1-3 of 3 results.