A365178
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x).
Original entry on oeis.org
1, 1, 5, 30, 210, 1595, 12791, 106574, 913562, 8004861, 71375653, 645536234, 5907683486, 54605672300, 509043322720, 4780441915832, 45182744331388, 429472919087158, 4102806757542542, 39370967793387086, 379335734835510622, 3668220243145708341
Offset: 0
-
a(n) = sum(k=0, n, binomial(k, n-k)*binomial(4*k, k)/(3*k+1));
A365183
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^4).
Original entry on oeis.org
1, 1, 5, 34, 268, 2299, 20838, 196326, 1903524, 18868861, 190356231, 1948055058, 20173907384, 211020478270, 2226243632838, 23660868061422, 253099278807684, 2722819049879436, 29439894433161189, 319749417998303470, 3486914150183526920
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(n-k, k)*binomial(4*n+1, n-k))/(4*n+1);
A365182
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^3).
Original entry on oeis.org
1, 1, 5, 33, 252, 2091, 18319, 166750, 1561599, 14948572, 145615404, 1438752770, 14384289530, 145248707646, 1479212551278, 15175516654760, 156691764630780, 1627069871618145, 16980373299730925, 178006989972532900, 1873607777794186000
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+k+1, k)*binomial(k, n-k)/(3*n+k+1));
A365181
G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^2).
Original entry on oeis.org
1, 1, 5, 32, 237, 1905, 16160, 142392, 1290613, 11955947, 112697701, 1077438356, 10422562156, 101827196684, 1003312506776, 9958506719664, 99479743121349, 999370184665407, 10090067735619023, 102330789530653912, 1041997707624103589, 10648963961114066129
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+2*k+1, k)*binomial(k, n-k)/(2*n+2*k+1));
A367041
G.f. satisfies A(x) = 1 + x^2 + x*A(x)^4.
Original entry on oeis.org
1, 1, 5, 26, 168, 1195, 8988, 70318, 566388, 4665221, 39113732, 332691758, 2863778072, 24900264326, 218372530380, 1929363592870, 17157018725000, 153442147343648, 1379250344938676, 12453816724761706, 112907775890596400, 1027394297869071687
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(3*(n-2*k)+1, k)*binomial(4*(n-2*k), n-2*k)/(3*(n-2*k)+1));
A200754
G.f. satisfies A(x) = 1 + x*A(x)^4 - x^2*A(x)^5.
Original entry on oeis.org
1, 1, 3, 13, 67, 380, 2288, 14351, 92737, 613063, 4126289, 28179766, 194780822, 1360053081, 9578997279, 67971291791, 485464864401, 3487203531460, 25176899072984, 182598098616625, 1329716528758651, 9718954060263384, 71273846758123552, 524279847227139350
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 67*x^4 + 380*x^5 + 2288*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 515*x^4 + 3068*x^5 + 19092*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 780*x^4 + 4741*x^5 + 29915*x^6 +...
where a(2) = 4 - 1; a(3) = 18 - 5; a(4) = 92 - 25; a(5) = 515 - 135; ...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+x*A^4-x^2*A^5+x*O(x^n));polcoeff(A,n)}
-
a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+3*k+1, k)*binomial(k, n-k)/(n+3*k+1)); \\ Seiichi Manyama, Nov 01 2023
A367048
G.f. satisfies A(x) = 1 + x*A(x)^4 + x^2*A(x).
Original entry on oeis.org
1, 1, 5, 27, 177, 1270, 9645, 76206, 619913, 5156959, 43667985, 375140383, 3261467573, 28641957520, 253702185717, 2263964868768, 20334261430769, 183680693283325, 1667613040080061, 15208587941854251, 139266058402655669, 1279953660931370623
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(3*n-5*k+1, k)*binomial(4*n-7*k, n-2*k)/(3*n-5*k+1));
A367049
G.f. satisfies A(x) = 1 + x*A(x)^4 + x^2*A(x)^2.
Original entry on oeis.org
1, 1, 5, 28, 187, 1361, 10479, 83914, 691738, 5830903, 50028259, 435454040, 3835732631, 34128555184, 306276957665, 2769050552948, 25197515469820, 230599623819217, 2121066298440282, 19597929365099640, 181814132152022195, 1692920612932871541
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(3*n-4*k+1, k)*binomial(4*n-6*k, n-2*k)/(3*n-4*k+1));
A367050
G.f. satisfies A(x) = 1 + x*A(x)^4 + x^2*A(x)^3.
Original entry on oeis.org
1, 1, 5, 29, 198, 1469, 11518, 93875, 787392, 6752175, 58929541, 521718814, 4674070602, 42296077935, 386027716280, 3549332631052, 32845586854208, 305685481682970, 2859315003009776, 26866125820982711, 253457922829307765, 2399910588283502630
Offset: 0
-
a(n) = sum(k=0, n\2, binomial(3*n-3*k+1, k)*binomial(4*n-5*k, n-2*k)/(3*n-3*k+1));
Showing 1-9 of 9 results.
Comments