cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365318 Decimal expansion of negative imaginary part of Gamma(exp(i*Pi/3)).

Original entry on oeis.org

5, 1, 7, 2, 7, 9, 0, 9, 9, 4, 7, 4, 8, 4, 0, 1, 5, 1, 5, 9, 3, 3, 2, 3, 5, 0, 1, 7, 1, 5, 4, 1, 9, 0, 7, 2, 2, 1, 8, 4, 7, 0, 9, 0, 3, 3, 1, 4, 1, 7, 5, 9, 0, 8, 7, 9, 8, 3, 2, 3, 2, 2, 6, 4, 4, 9, 9, 0, 0, 3, 6, 0, 0, 3, 2, 7, 5, 1, 7, 7, 5, 8, 6, 8, 0, 1, 6, 4, 2, 2, 6, 3, 6, 1, 1, 6, 1, 1, 1, 0, 9, 6, 6, 0, 9, 2
Offset: 0

Views

Author

Artur Jasinski, Sep 01 2023

Keywords

Examples

			0.51727909947484...
Gamma(cos(Pi/3) + I*sin(Pi/3)) = 0.37980489179139...-I*0.51727909947484...
		

Crossrefs

Cf. A365317 (real part), A365319 (abs).

Programs

  • Mathematica
    RealDigits[-Im[Gamma[Cos[Pi/3] + I Sin[Pi/3]]], 10, 106][[1]]
    (* or *)
    RealDigits[Sqrt[Pi/Cosh[Pi Sqrt[3]/2]] Sin[2 RiemannSiegelTheta[Sqrt[3]/2] + ArcTan[Tanh[Pi Sqrt[3]/4]] + Sqrt[3] Log[2 Pi]/2], 10, 106][[1]]
  • PARI
    -imag(gamma(exp(I*Pi/3))) \\ Michel Marcus, Sep 01 2023

Formula

Equals sqrt(Pi*sech(Pi*sqrt(3)/2))*sin(2*theta(sqrt(3)/2)+(sqrt(3)/2)*log(2*Pi)+arctan(tanh(Pi*sqrt(3)/4))) where theta is Riemann-Siegel theta function.