A365323 Number of integer partitions with sum < n whose distinct parts cannot be linearly combined using all positive coefficients to obtain n.
0, 0, 1, 1, 4, 3, 9, 7, 15, 16, 29, 23, 47, 43, 74, 65, 114, 100, 174, 153, 257, 228, 368, 312, 530, 454, 736, 645, 1025, 902, 1402, 1184, 1909, 1626, 2618, 2184, 3412, 2895, 4551, 3887, 5966, 5055, 7796, 6509, 10244, 8462, 13060, 10881, 16834, 14021, 21471
Offset: 1
Keywords
Examples
The partition y = (3,3,2) has distinct parts {2,3}, and we have 9 = 3*2 + 1*3, so y is not counted under a(9). The a(3) = 1 through a(10) = 16 partitions: (2) (3) (2) (4) (2) (3) (2) (3) (3) (5) (3) (5) (4) (4) (4) (3,2) (4) (6) (5) (6) (2,2) (5) (7) (6) (7) (6) (3,3) (7) (8) (2,2) (4,3) (8) (9) (3,3) (5,2) (2,2) (3,3) (4,2) (4,2) (4,4) (2,2,2) (4,3) (5,2) (4,4) (5,3) (5,3) (5,4) (6,2) (6,3) (2,2,2) (7,2) (4,2,2) (3,3,3) (2,2,2,2) (4,3,2) (5,2,2)
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..95
Crossrefs
For length-2 subsets we have A365321 (we use n instead of n-1).
Programs
-
Mathematica
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],combp[n,Union[#]]=={}&]],{n,10}]
-
Python
from sympy.utilities.iterables import partitions def A365323(n): a = {tuple(sorted(set(p))) for p in partitions(n)} return sum(1 for k in range(1,n) for d in partitions(k) if tuple(sorted(set(d))) not in a) # Chai Wah Wu, Sep 12 2023
Extensions
a(21)-a(51) from Chai Wah Wu, Sep 12 2023