cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365336 The sum of exponentially odd divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 11, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A295295 at n = 64.
The sum of divisors of the square root of the largest square dividing n is A069290(n).
The number of these divisors is A365335(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(2*Floor[(e+2)/4] + 1) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(2*((f[i,2]+2)\4) + 1) - f[i,1])/(f[i,1]^2 - 1) + 1);}

Formula

a(n) = A033634(A000188(n)).
a(n) = 1 if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = (p^(2*floor((e+2)/4) + 1) - p)/(p^2 - 1) + 1. [corrected by Georg Fischer, Oct 07 2023]
Dirichlet g.f.: zeta(s) * zeta(4*s-2) * Product_{p prime} (1 + 1/p^(2*s-1) - 1/p^(4*s-2)).
From Vaclav Kotesovec, Sep 02 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(4*s-2) * Product_{p prime} (1 - 1/p^s + 1/p^(2*s-1) - 1/p^(3*s-1) - 1/p^(4*s-2) + 1/p^(5*s-2)).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(4*s-2) * Product_{p prime} (1 - 2/p^(4*s-2) + 1/p^(6*s-3)).
Let f(s) = Product_{p prime} (1 - 2/p^(4*s-2) + 1/p^(6*s-3)), then Sum_{k=1..n} a(k) ~ Pi^2/12 * n * (f(1) * (log(n) + 3*gamma - 1 + 24*zeta'(2)/Pi^2) + f'(1)), where f(1) = Product_{p prime} (1 - 2/p^2 + 1/p^3) = A065464 = 0.42824950567709444021876..., f'(1) = f(1) * Sum_{primes p} 2*(4*p-3)*log(p) / (p^3 - 2*p + 1) = 1.617322217899181826790... and gamma is the Euler-Mascheroni constant A001620. (End)