cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A365340 a(n) = (4*n)!/(3*n+1)!.

Original entry on oeis.org

1, 1, 8, 132, 3360, 116280, 5100480, 271252800, 16963914240, 1220096908800, 99225500774400, 9003984596006400, 901928094049382400, 98856066097780992000, 11768525894839633920000, 1512185803617951221760000, 208598907329474462760960000
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (4*n)!/(3*n+1)!;
    
  • Python
    from sympy import ff
    def A365340(n): return ff(n<<2,n-1) # Chai Wah Wu, Sep 01 2023

Formula

E.g.f.: exp( 1/4 * Sum_{k>=1} binomial(4*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002293(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^3).
a(n) = Sum_{k=0..n} (3*n+1)^(k-1) * |Stirling1(n,k)|. (End)

A365368 First integer > n reached under iteration of map x -> (5/3)*round(x) when started at n, or -1 if no such integer is ever reached.

Original entry on oeis.org

5, 5, 5, 20, 10245, 10, 20, 10245, 15, 130, 30, 20, 10245, 105, 25, 45, 130, 30, 245, 55, 35, 10245, 105, 40, 70, 120, 45, 130, 80, 50, 145, 245, 55, 95, 270, 60, 10245, 105, 65, 520, 870, 70, 120, 2605, 75, 355, 130, 80, 380, 230, 85, 145, 245, 90, 255, 155, 95
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Comments

Conjecture: an integer will always be reached, i.e. a(n) > 0 for all n.

Crossrefs

Programs

  • Python
    from fractions import Fraction
    def A365368(n):
        x = Fraction(n)
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._round_(),3)
        return int(x)

A052795 a(n) = (6*n)!/(5*n+1)!.

Original entry on oeis.org

1, 1, 12, 306, 12144, 657720, 45239040, 3776965920, 371090522880, 41951580652800, 5364506808460800, 765606216965990400, 120639963305775513600, 20803502274492921984000, 3896911902445736638464000, 787971434323820421362688000, 171063718698166603304067072000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Programs

  • Maple
    spec := [S,{B=Prod(Z,S,S,S,S,S),S=Sequence(B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20); # end of program
    seq((6*n)!/(5*n+1)!, n=0..20);  # Mark van Hoeij, May 29 2013
  • PARI
    a(n) = (6*n)!/(5*n+1)!; \\ Joerg Arndt, May 29 2013
    
  • Python
    from sympy import ff
    def A052795(n): return ff(6*n,n-1) # Chai Wah Wu, Sep 01 2023

Formula

E.g.f.: RootOf(-_Z+_Z^6*x+1).
D-finite Recurrence: {a(1)=1, a(2)=12, (-720-9864*n-48600*n^2-110160*n^3-116640*n^4-46656*n^5)*a(n)+(3125*n^4+9375*n^3+10000*n^2+4500*n+720)*a(n+1), a(6)=45239040, a(3)=306, a(4)=12144, a(5)=657720}.
1/25*3^(1/2)*(5+5^(1/2))^(1/2)*(5-5^(1/2))^(1/2)*Pi^(1/2) *GAMMA(2*n+37/3) *GAMMA(2*n+38/3)/GAMMA(n+34/5)/GAMMA(n+33/5)/GAMMA(n+32/5) /GAMMA(n+36/5) *GAMMA(n+13/2)*3125^(-6-n)*2916^(n+6).
a(n) = (6*n)!/(5*n+1)!. - Mark van Hoeij, May 29 2013
E.g.f.: exp( 1/6 * Sum_{k>=1} binomial(6*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002295(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^5).
a(n) = Sum_{k=0..n} (5*n+1)^(k-1) * |Stirling1(n,k)|. (End)

Extensions

New name using Mark van Hoeij's formula from Joerg Arndt, Feb 18 2019
Accidentally removed a(0) reinserted by Georg Fischer, May 09 2021

A365369 A365368/5, except when A365368(n) = -1, then a(n) = -1.

Original entry on oeis.org

1, 1, 1, 4, 2049, 2, 4, 2049, 3, 26, 6, 4, 2049, 21, 5, 9, 26, 6, 49, 11, 7, 2049, 21, 8, 14, 24, 9, 26, 16, 10, 29, 49, 11, 19, 54, 12, 2049, 21, 13, 104, 174, 14, 24, 521, 15, 71, 26, 16, 76, 46, 17, 29, 49, 18, 51, 31, 19, 54, 151, 20, 34, 2049, 21, 99, 36
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Crossrefs

Programs

  • Python
    from fractions import Fraction
    def A365369(n):
        x = Fraction(n)
        while x.denominator > 1 or x<=n:
            x = Fraction(5*x._round_(),3)
        return int(x)//5

A365370 Positions of records in A365367.

Original entry on oeis.org

1, 5, 415, 635, 15935, 60971, 275039, 514661, 2857994, 14179544, 170794880, 2382918520
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Comments

Numbers k such that iteration of the map x -> (5/3)*round(x) starting at x = k takes more steps to reach an integer > k than it does for any number from 1 to k - 1.

Crossrefs

Formula

A365367(a(n)) = A365371(n).

A365371 Record values of A365367.

Original entry on oeis.org

3, 15, 17, 21, 24, 28, 32, 35, 37, 45, 50, 55
Offset: 1

Views

Author

Chai Wah Wu, Sep 02 2023

Keywords

Comments

Numbers v = A365367(k) such that A365367(m) < v for 1 <= m < k.

Crossrefs

Formula

a(n) = A365367(A365370(n)).
Showing 1-6 of 6 results.