A365375 Numbers being the smallest positive integer having its digits (Cf. A179239) from which two digits can be chosen, the difference being any value from 0 to 9.
100269, 100479, 101269, 101479, 102269, 102669, 102699, 104479, 104779, 104799, 200589, 202589, 205589, 205889, 205899, 300789, 303789, 307789, 307889, 307899, 1000269, 1000479, 1001269, 1001479, 1002269, 1002349, 1002359, 1002369, 1002379, 1002469, 1002479, 1002489, 1002569, 1002579
Offset: 1
Examples
a(1) = 100269 and we have: 0 = 0 - 0 1 = 1 - 0 2 = 2 - 0 3 = 9 - 6 4 = 6 - 2 5 = 6 - 1 6 = 6 - 0 7 = 9 - 2 8 = 9 - 1 9 = 9 - 0 The integer 102069 being an anagram of 100269 is not in the sequence (though 102069 also produces the 10 digits).
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lst={};Do[If[Union@Flatten[Abs@*Differences/@Subsets[IntegerDigits@k,{2}]]==Range[0,9],If[FreeQ[lst,s=Sort@IntegerDigits@k],AppendTo[lst,s];Print@k]],{k,10^6}]
-
Python
from itertools import count, islice, combinations, combinations_with_replacement as mc def c(t): d = list(map(int, t)) return len(set(abs(d[i]-d[j]) for i, j in combinations(range(len(d)), 2))) == 10 def bgen(): D = "123456789" return ((D[i],)+r for d in count(1) for i in range(9) for r in mc("0"+D[i:], d-1)) def agen(): yield from (int("".join(t)) for t in filter(c, bgen())) print(list(islice(agen(), 34))) # Michael S. Branicky, Sep 11 2024
Extensions
Name specified by David A. Corneth, Sep 11 2024
Comments