A365377 Number of subsets of {1..n} without a subset summing to n.
0, 1, 2, 3, 6, 9, 17, 26, 49, 72, 134, 201, 366, 544, 984, 1436, 2614, 3838, 6770, 10019, 17767, 25808, 45597, 66671, 116461, 169747, 295922, 428090, 750343, 1086245, 1863608, 2721509, 4705456, 6759500, 11660244, 16877655, 28879255, 41778027, 71384579, 102527811, 176151979
Offset: 0
Keywords
Examples
The a(1) = 1 through a(6) = 17 subsets: {} {} {} {} {} {} {1} {1} {1} {1} {1} {2} {2} {2} {2} {3} {3} {3} {1,2} {4} {4} {2,3} {1,2} {5} {1,3} {1,2} {2,4} {1,3} {3,4} {1,4} {2,3} {2,5} {3,4} {3,5} {4,5} {1,3,4} {2,3,5} {3,4,5}
Links
- David A. Corneth, Table of n, a(n) for n = 0..60
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#],n]&]],{n,0,10}]
-
PARI
isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(0))); return(1); a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ Michel Marcus, Sep 09 2023
-
Python
from itertools import combinations, chain from sympy.utilities.iterables import partitions def A365377(n): if n == 0: return 0 nset = set(range(1,n+1)) s, c = [set(p) for p in partitions(n,m=n,k=n) if max(p.values(),default=1) == 1], 1 for a in chain.from_iterable(combinations(nset,m) for m in range(2,n+1)): if sum(a) >= n: aset = set(a) for p in s: if p.issubset(aset): c += 1 break return (1<
Chai Wah Wu, Sep 09 2023
Formula
a(n) = 2^n-A365376(n). - Chai Wah Wu, Sep 09 2023
Extensions
a(16)-a(27) from Michel Marcus, Sep 09 2023
a(28)-a(32) from Chai Wah Wu, Sep 09 2023
a(33)-a(35) from Chai Wah Wu, Sep 10 2023
More terms from David A. Corneth, Sep 10 2023