A365380 Number of subsets of {1..n} that cannot be linearly combined using nonnegative coefficients to obtain n.
1, 1, 2, 2, 6, 4, 16, 12, 32, 32, 104, 48, 256, 208, 448, 448, 1568, 896, 3840, 2368, 6912, 7680, 22912, 10752, 50688, 44800, 104448, 88064, 324096, 165888, 780288, 541696, 1458176, 1519616, 4044800, 2220032, 10838016, 8744960, 20250624, 16433152, 62267392, 34865152
Offset: 1
Keywords
Examples
The set {4,5,6} cannot be linearly combined to obtain 7 so is counted under a(7), but we have 8 = 2*4 + 0*5 + 0*6, so it is not counted under a(8). The a(1) = 1 through a(8) = 12 subsets: {} {} {} {} {} {} {} {} {2} {3} {2} {4} {2} {3} {3} {5} {3} {5} {4} {4,5} {4} {6} {2,4} {5} {7} {3,4} {6} {3,6} {2,4} {3,7} {2,6} {5,6} {3,5} {5,7} {3,6} {6,7} {4,5} {3,6,7} {4,6} {5,6,7} {5,6} {2,4,6} {3,5,6} {4,5,6}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
- Steven R. Finch, Monoids of natural numbers, March 17, 2009.
Crossrefs
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Subsets[Range[n-1]],combs[n,#]=={}&]],{n,5}]
Formula
a(n) = 2^n - A365073(n).
Extensions
Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023