cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365441 Number of partitions of [2n] whose block maxima sum to 3n.

Original entry on oeis.org

1, 1, 2, 5, 10, 23, 47, 103, 209, 449, 908, 1909, 3864, 8011, 16165, 33244, 66933, 136628, 274876, 558107, 1121160, 2268526, 4552291, 9183569, 18417449, 37073504, 74300048, 149334422, 299134695, 600481001, 1202436958, 2411536369, 4827532935, 9675363921, 19364235775
Offset: 0

Views

Author

Alois P. Heinz, Dec 06 2023

Keywords

Comments

Rows of A367955 and the reversed columns of A367955 converge to this sequence.

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1|2.
a(2) = 2: 12|34, 134|2.
a(3) = 5: 123|456, 12456|3, 13|2456, 1456|23, 1|2|3456.
a(4) = 10: 1234|5678, 1235678|4, 124|35678, 125678|34, 134|25678, 135678|24, 14|235678, 15678|234, 1|23|45678, 1|245678|3.
a(5) = 23: 12345|6789(10), 12346789(10)|5, 1235|46789(10), 1236789(10)|45, 1245|36789(10), 1246789(10)|35, 125|346789(10), 126789(10)|345, 12|3|456789(10), 1345|26789(10), 1346789(10)|25, 135|246789(10), 136789(10)|245, 13|2|456789(10), 145|236789(10), 146789(10)|235, 15|2346789(10), 16789(10)|2345, 1|234|56789(10), 1|2356789(10)|4, 1456789(10)|2|3, 1|24|356789(10), 1|256789(10)|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
        end:
    a:= n-> coeff(b(2*n, 0), x, 3*n):
    seq(a(n), n=0..42);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 b(3*n, 2*n, 0):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
    a[n_] := If[n == 0, 1, b[3n, 2n, 0]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Oct 03 2024, after Alois P. Heinz *)

Formula

a(n) = A367955(2n,3n).