A365474 a(n) = A365339(10^n).
1, 7, 34, 193, 1276, 9656, 78562, 664643, 5761519, 50847598
Offset: 0
Links
- Paul Pollack, Carl Pomerance, and Enrique Treviño, Sets of monotonicity for Euler's totient function, preprint. See M(n).
- Paul Pollack, Carl Pomerance, and Enrique Treviño, Sets of monotonicity for Euler's totient function, Ramanujan J. 30 (2013), no. 3, pp. 379-398.
- Terence Tao, Monotone non-decreasing sequences of the Euler totient function, arXiv:2309.02325 [math.NT], 2023.
Programs
-
Python
from bisect import bisect from sympy import totient def A365474(n): m = 10**n plist, qlist, c = tuple(totient(i) for i in range(1,m+1)), [0]*(m+1), 0 for i in range(m): qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i c = max(c,a) return c
Formula
a(n) = A006880(n)+64 for n >= 5 (conjectured).
Comments