cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365488 The number of divisors of the smallest number whose cube is divisible by n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

First differs from A365171 at n = 32.
The number of divisors of the smallest cube divisible by n, A053149(n), is A365489(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Ceiling[e/3] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
    With[{c=Range[200]^3},Table[DivisorSigma[0,Surd[SelectFirst[c,Mod[#,n]==0&],3]],{n,90}]] (* Harvey P. Dale, Sep 15 2024 *)
  • PARI
    a(n) = vecprod(apply(x -> (x-1)\3 + 2, factor(n)[, 2]));

Formula

a(n) = A000005(A019555(n)).
Multiplicative with a(p^e) = ceiling(e/3) + 1.
a(n) <= A000005(n) with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(s) * zeta(3*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)).
From Vaclav Kotesovec, Sep 06 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(3*s) * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ zeta(3) * f(1) * n * (log(n) + 2*gamma - 1 + 3*zeta'(3)/zeta(3) + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085026313185459506482223745141452711510108346133288...,
f'(1) = f(1) * Sum_{p prime} (-4 + 3*p + 2*p^2) * log(p) / (1 - p - p^2 + p^4) = f(1) * 1.4525924794451595590371439593828547341482465114411929136723476679...
and gamma is the Euler-Mascheroni constant A001620. (End)