A365491 The number of divisors of the smallest number whose 4th power is divisible by n.
1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 3, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms).
Crossrefs
Programs
-
Mathematica
f[p_, e_] := Ceiling[e/4] + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] With[{c=Range[100]^4},Table[DivisorSigma[0,Surd[SelectFirst[c,Mod[#,n]==0&],4]],{n,90}]] (* Harvey P. Dale, Jul 09 2024 *)
-
PARI
a(n) = vecprod(apply(x -> (x-1)\4 + 2, factor(n)[, 2]));
Formula
Multiplicative with a(p^e) = ceiling(e/4) + 1.
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^s - 1/p^(4*s)).
From Vaclav Kotesovec, Sep 06 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(4*s) * Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) - 1/p^(4*s) + 1/p^(5*s)).
Sum_{k=1..n} a(k) ~ zeta(4) * f(1) * n * (log(n) + 2*gamma - 1 + 4*zeta'(4)/zeta(4) + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.57615273538566705952061107826411727540624711680289618854325028459572487...,
f'(1) = f(1) * Sum_{p prime} (-5 + 4*p + 2*p^3) * log(p) / (1 - p - p^3 + p^5) = f(1) * 1.3011434396559802378314782600747661399223385669839998680418996210...
and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = A322483(A019554(n)) (the number of exponentially odd divisors of the smallest number whose square is divisible by n). - Amiram Eldar, Sep 08 2023
Comments