cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A365528 a(n) = Sum_{k=0..floor(n/5)} Stirling2(n,5*k).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 140, 1050, 6951, 42526, 246785, 1381105, 7547826, 40827787, 223429571, 1289945660, 8411093621, 66070626548, 624900235273, 6667243384356, 74991482322466, 854627237256694, 9698297591786441, 108934902927646609
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[StirlingS2[n, 5*k], {k, 0, Floor[n/5]}]; Array[a, 25, 0] (* Amiram Eldar, Sep 13 2023 *)
  • PARI
    a(n) = sum(k=0, n\5, stirling(n, 5*k, 2));

Formula

Let A(0)=1, B(0)=0, C(0)=0, D(0)=0 and E(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k), E(n+1) = Sum_{k=0..n} binomial(n,k)*D(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*E(k). a(n) = A(n), A365529(n) = B(n), A365530(n) = C(n), A365531(n) = D(n) and A365532(n) = E(n).
G.f.: Sum_{k>=0} x^(5*k) / Product_{j=1..5*k} (1-j*x).
a(n) ~ n^n / (5 * (LambertW(n))^n * exp(n+1-n/LambertW(n)) * sqrt(1+LambertW(n))). - Vaclav Kotesovec, Jun 10 2025

A365529 a(n) = Sum_{k=0..floor((n-1)/5)} Stirling2(n,5*k+1).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 22, 267, 2647, 22828, 179489, 1323719, 9323744, 63502440, 422172752, 2763863468, 18017811013, 119078265944, 822495346707, 6206943675825, 53413341096271, 529613886789747, 5863983528090106, 69211078916780252, 839908976768680556
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, (n-1)\5, stirling(n, 5*k+1, 2));

Formula

Let A(0)=1, B(0)=0, C(0)=0, D(0)=0 and E(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k), E(n+1) = Sum_{k=0..n} binomial(n,k)*D(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*E(k). A365528(n) = A(n), a(n) = B(n), A365530(n) = C(n), A365531(n) = D(n) and A365532(n) = E(n).
G.f.: Sum_{k>=0} x^(5*k+1) / Product_{j=1..5*k+1} (1-j*x).

A365530 a(n) = Sum_{k=0..floor((n-2)/5)} Stirling2(n,5*k+2).

Original entry on oeis.org

0, 0, 1, 3, 7, 15, 31, 64, 155, 717, 6391, 65010, 629444, 5719597, 49340838, 408864186, 3284672489, 25770192646, 198718943490, 1516391860879, 11554571944615, 89144035246500, 711587142257776, 6054854693784594, 56609279400922224, 590143167134961765
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, (n-2)\5, stirling(n, 5*k+2, 2));

Formula

Let A(0)=1, B(0)=0, C(0)=0, D(0)=0 and E(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k), E(n+1) = Sum_{k=0..n} binomial(n,k)*D(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*E(k). A365528(n) = A(n), A365529(n) = B(n), a(n) = C(n), A365531(n) = D(n) and A365532(n) = E(n).
G.f.: Sum_{k>=0} x^(5*k+2) / Product_{j=1..5*k+2} (1-j*x).

A365532 a(n) = Sum_{k=0..floor((n-4)/5)} Stirling2(n,5*k+4).

Original entry on oeis.org

0, 0, 0, 0, 1, 10, 65, 350, 1701, 7771, 34150, 146905, 633776, 2892032, 15526876, 109484545, 992589171, 10223409493, 108982611518, 1156117871286, 12062817285396, 123603289559039, 1245986248828926, 12391614409960544, 121996350285087172
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, (n-4)\5, stirling(n, 5*k+4, 2));

Formula

Let A(0)=1, B(0)=0, C(0)=0, D(0)=0 and E(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k), E(n+1) = Sum_{k=0..n} binomial(n,k)*D(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*E(k). A365528(n) = A(n), A365529(n) = B(n), A365530(n) = C(n), A365531(n) = D(n) and a(n) = E(n).
G.f.: Sum_{k>=0} x^(5*k+4) / Product_{j=1..5*k+4} (1-j*x).
Showing 1-4 of 4 results.