A365525
a(n) = Sum_{k=0..floor(n/4)} Stirling2(n,4*k).
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 65, 350, 1702, 7806, 34855, 157630, 770529, 4432220, 31307432, 259090260, 2316320073, 21172354778, 193091210857, 1744478148866, 15627203762926, 139526376391986, 1251976261264071, 11417796498945894, 107280845105151601
Offset: 0
-
f:= proc(n) local k; add(Stirling2(n,4*k),k=0..n/4) end proc:
map(f, [$0..30]); # Robert Israel, Sep 11 2024
-
a[n_] := Sum[StirlingS2[n, 4*k], {k, 0, Floor[n/4]}]; Array[a, 25, 0] (* Amiram Eldar, Sep 11 2023 *)
-
a(n) = sum(k=0, n\4, stirling(n, 4*k, 2));
-
from sympy.functions.combinatorial.numbers import stirling
def A365525(n): return sum(stirling(n,k<<2) for k in range((n>>2)+1)) # Chai Wah Wu, Sep 08 2023
A365529
a(n) = Sum_{k=0..floor((n-1)/5)} Stirling2(n,5*k+1).
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 22, 267, 2647, 22828, 179489, 1323719, 9323744, 63502440, 422172752, 2763863468, 18017811013, 119078265944, 822495346707, 6206943675825, 53413341096271, 529613886789747, 5863983528090106, 69211078916780252, 839908976768680556
Offset: 0
-
a(n) = sum(k=0, (n-1)\5, stirling(n, 5*k+1, 2));
A365530
a(n) = Sum_{k=0..floor((n-2)/5)} Stirling2(n,5*k+2).
Original entry on oeis.org
0, 0, 1, 3, 7, 15, 31, 64, 155, 717, 6391, 65010, 629444, 5719597, 49340838, 408864186, 3284672489, 25770192646, 198718943490, 1516391860879, 11554571944615, 89144035246500, 711587142257776, 6054854693784594, 56609279400922224, 590143167134961765
Offset: 0
-
a(n) = sum(k=0, (n-2)\5, stirling(n, 5*k+2, 2));
A365531
a(n) = Sum_{k=0..floor((n-3)/5)} Stirling2(n,5*k+3).
Original entry on oeis.org
0, 0, 0, 1, 6, 25, 90, 301, 967, 3061, 10080, 40381, 245553, 2161238, 21701381, 219007491, 2149071359, 20442363031, 189226358659, 1712836890912, 15232581945180, 133717667932475, 1164901223314180, 10143255631462661, 89207257764369032, 804712211338739040
Offset: 0
-
a(n) = sum(k=0, (n-3)\5, stirling(n, 5*k+3, 2));
A365532
a(n) = Sum_{k=0..floor((n-4)/5)} Stirling2(n,5*k+4).
Original entry on oeis.org
0, 0, 0, 0, 1, 10, 65, 350, 1701, 7771, 34150, 146905, 633776, 2892032, 15526876, 109484545, 992589171, 10223409493, 108982611518, 1156117871286, 12062817285396, 123603289559039, 1245986248828926, 12391614409960544, 121996350285087172
Offset: 0
-
a(n) = sum(k=0, (n-4)\5, stirling(n, 5*k+4, 2));
A384836
a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n,4*k)|.
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 85, 735, 6770, 67320, 724550, 8427650, 105615500, 1420941600, 20448793300, 313670857500, 5111631733000, 88224807112000, 1608190674259000, 30879323250633000, 623074177992110000, 13182400475167560000, 291842125111122170000, 6748135840840046510000
Offset: 0
-
Table[Sum[Abs[StirlingS1[n, 4*k]], {k, 0, Floor[n/4]}], {n, 0, 30}]
-
a(n) = sum(k=0, n\4, abs(stirling(n, 4*k, 1))); \\ Michel Marcus, Jun 10 2025
A384837
a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n,5*k)|.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 15, 175, 1960, 22449, 269326, 3416985, 45997655, 657262606, 9959178229, 159758917956, 2707741441460, 48389066401764, 909877831207125, 17965423056654249, 371766710374672096, 8047954162682335066, 181941000229690525197, 4288430328840863166236, 105226297616943093770399
Offset: 0
-
Table[Sum[Abs[StirlingS1[n, 5*k]], {k, 0, Floor[n/5]}], {n, 0, 30}]
-
a(n) = sum(k=0, n\5, abs(stirling(n, 5*k, 1))); \\ Michel Marcus, Jun 10 2025
Showing 1-7 of 7 results.