cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357828 a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n,3*k)|.

Original entry on oeis.org

1, 0, 0, 1, 6, 35, 226, 1645, 13454, 122661, 1236018, 13656951, 164290182, 2138379243, 29949509226, 449188719525, 7183702249542, 122039922034485, 2194928052851898, 41666342509646127, 832547791827455886, 17466905709043534107, 383908421683657311714
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, abs(stirling(n, 3*k, 1)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k)/(3*k)!)))
    
  • PARI
    Pochhammer(x, n) = prod(k=0, n-1, x+k);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+Pochhammer(w, n)+Pochhammer(w^2, n))/3;

Formula

Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(-log(1-x)).
a(n) = ( (1)_n + (w)_n + (w^2)_n )/3, where (x)_n is the Pochhammer symbol.
a(n) ~ n!/3. - Vaclav Kotesovec, Jun 10 2025

A384837 a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n,5*k)|.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 15, 175, 1960, 22449, 269326, 3416985, 45997655, 657262606, 9959178229, 159758917956, 2707741441460, 48389066401764, 909877831207125, 17965423056654249, 371766710374672096, 8047954162682335066, 181941000229690525197, 4288430328840863166236, 105226297616943093770399
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Abs[StirlingS1[n, 5*k]], {k, 0, Floor[n/5]}], {n, 0, 30}]
  • PARI
    a(n) = sum(k=0, n\5, abs(stirling(n, 5*k, 1))); \\ Michel Marcus, Jun 10 2025

Formula

a(n) ~ n!/5.
Showing 1-2 of 2 results.