A357119
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} |Stirling1(n,k*j)|.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 6, 0, 1, 0, 0, 3, 24, 0, 1, 0, 0, 1, 12, 120, 0, 1, 0, 0, 0, 6, 60, 720, 0, 1, 0, 0, 0, 1, 35, 360, 5040, 0, 1, 0, 0, 0, 0, 10, 226, 2520, 40320, 0, 1, 0, 0, 0, 0, 1, 85, 1645, 20160, 362880, 0, 1, 0, 0, 0, 0, 0, 15, 735, 13454, 181440, 3628800, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 0, 0, 0, 0, 0, ...
0, 2, 1, 0, 0, 0, 0, ...
0, 6, 3, 1, 0, 0, 0, ...
0, 24, 12, 6, 1, 0, 0, ...
0, 120, 60, 35, 10, 1, 0, ...
0, 720, 360, 226, 85, 15, 1, ...
-
T(n, k) = sum(j=0, n, abs(stirling(n, k*j, 1)));
-
T(n, k) = if(k==0, 0^n, n!*polcoef(sum(j=0, n\k, (-log(1-x+x*O(x^n)))^(k*j)/(k*j)!), n));
-
Pochhammer(x, n) = prod(k=0, n-1, x+k);
T(n, k) = if(k==0, 0^n, my(w=exp(2*Pi*I/k)); round(sum(j=0, k-1, Pochhammer(w^j, n)))/k);
A357830
a(n) = Sum_{k=0..floor((n-2)/3)} |Stirling1(n,3*k+2)|.
Original entry on oeis.org
0, 0, 1, 3, 11, 51, 289, 1939, 15029, 132069, 1296771, 14063721, 166897059, 2150579067, 29895590361, 445871456667, 7100686041813, 120249378265653, 2157637558311963, 40887284144179473, 815949872494416387, 17103401793743095467, 375692072337527815233
Offset: 0
-
f:= proc(n) local k; add(abs(Stirling1(n,3*k+2)), k=0..(n-2)/3) end proc:
map(f, [$0..30]); # Robert Israel, Feb 12 2024
-
Table[Sum[Abs[StirlingS1[n,3k+2]],{k,0,Floor[(n-2)/3]}],{n,0,30}] (* Harvey P. Dale, Jan 12 2024 *)
-
a(n) = sum(k=0, (n-2)\3, abs(stirling(n, 3*k+2, 1)));
-
my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k+2)/(3*k+2)!))))
-
Pochhammer(x, n) = prod(k=0, n-1, x+k);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+w*Pochhammer(w, n)+w^2*Pochhammer(w^2, n))/3;
A357829
a(n) = Sum_{k=0..floor((n-1)/3)} |Stirling1(n,3*k+1)|.
Original entry on oeis.org
0, 1, 1, 2, 7, 34, 205, 1456, 11837, 108150, 1096011, 12196128, 147814359, 1938062490, 27333191613, 412614191808, 6638401596645, 113398127795862, 2049808094564139, 39091473755006400, 784404343854767727, 16520634668922810426, 364400233756422553053
Offset: 0
-
a(n) = sum(k=0, (n-1)\3, abs(stirling(n, 3*k+1, 1)));
-
my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k+1)/(3*k+1)!))))
-
Pochhammer(x, n) = prod(k=0, n-1, x+k);
a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+w^2*Pochhammer(w, n)+w*Pochhammer(w^2, n))/3;
A384836
a(n) = Sum_{k=0..floor(n/4)} |Stirling1(n,4*k)|.
Original entry on oeis.org
1, 0, 0, 0, 1, 10, 85, 735, 6770, 67320, 724550, 8427650, 105615500, 1420941600, 20448793300, 313670857500, 5111631733000, 88224807112000, 1608190674259000, 30879323250633000, 623074177992110000, 13182400475167560000, 291842125111122170000, 6748135840840046510000
Offset: 0
-
Table[Sum[Abs[StirlingS1[n, 4*k]], {k, 0, Floor[n/4]}], {n, 0, 30}]
-
a(n) = sum(k=0, n\4, abs(stirling(n, 4*k, 1))); \\ Michel Marcus, Jun 10 2025
A384837
a(n) = Sum_{k=0..floor(n/5)} |Stirling1(n,5*k)|.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 15, 175, 1960, 22449, 269326, 3416985, 45997655, 657262606, 9959178229, 159758917956, 2707741441460, 48389066401764, 909877831207125, 17965423056654249, 371766710374672096, 8047954162682335066, 181941000229690525197, 4288430328840863166236, 105226297616943093770399
Offset: 0
-
Table[Sum[Abs[StirlingS1[n, 5*k]], {k, 0, Floor[n/5]}], {n, 0, 30}]
-
a(n) = sum(k=0, n\5, abs(stirling(n, 5*k, 1))); \\ Michel Marcus, Jun 10 2025
Showing 1-5 of 5 results.