cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A357828 a(n) = Sum_{k=0..floor(n/3)} |Stirling1(n,3*k)|.

Original entry on oeis.org

1, 0, 0, 1, 6, 35, 226, 1645, 13454, 122661, 1236018, 13656951, 164290182, 2138379243, 29949509226, 449188719525, 7183702249542, 122039922034485, 2194928052851898, 41666342509646127, 832547791827455886, 17466905709043534107, 383908421683657311714
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, abs(stirling(n, 3*k, 1)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k)/(3*k)!)))
    
  • PARI
    Pochhammer(x, n) = prod(k=0, n-1, x+k);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+Pochhammer(w, n)+Pochhammer(w^2, n))/3;

Formula

Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + exp(w*x) + exp(w^2*x))/3 = 1 + x^3/3! + x^6/6! + ... . Then the e.g.f. for the sequence is F(-log(1-x)).
a(n) = ( (1)_n + (w)_n + (w^2)_n )/3, where (x)_n is the Pochhammer symbol.
a(n) ~ n!/3. - Vaclav Kotesovec, Jun 10 2025

A357829 a(n) = Sum_{k=0..floor((n-1)/3)} |Stirling1(n,3*k+1)|.

Original entry on oeis.org

0, 1, 1, 2, 7, 34, 205, 1456, 11837, 108150, 1096011, 12196128, 147814359, 1938062490, 27333191613, 412614191808, 6638401596645, 113398127795862, 2049808094564139, 39091473755006400, 784404343854767727, 16520634668922810426, 364400233756422553053
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, (n-1)\3, abs(stirling(n, 3*k+1, 1)));
    
  • PARI
    my(N=30, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=0, N\3, (-log(1-x))^(3*k+1)/(3*k+1)!))))
    
  • PARI
    Pochhammer(x, n) = prod(k=0, n-1, x+k);
    a(n) = my(w=(-1+sqrt(3)*I)/2); round(Pochhammer(1, n)+w^2*Pochhammer(w, n)+w*Pochhammer(w^2, n))/3;

Formula

Let w = exp(2*Pi*i/3) and set F(x) = (exp(x) + w^2*exp(w*x) + w*exp(w^2*x))/3 = x + x^4/4! + x^7/7! + ... . Then the e.g.f. for the sequence is F(-log(1-x)).
a(n) = ( (1)_n + w^2 * (w)_n + w * (w^2)_n )/3, where (x)_n is the Pochhammer symbol.
Showing 1-2 of 2 results.