A365544 Number of subsets of {1..n} containing two distinct elements summing to n.
0, 0, 0, 2, 4, 14, 28, 74, 148, 350, 700, 1562, 3124, 6734, 13468, 28394, 56788, 117950, 235900, 484922, 969844, 1979054, 3958108, 8034314, 16068628, 32491550, 64983100, 131029082, 262058164, 527304974, 1054609948, 2118785834, 4237571668, 8503841150, 17007682300
Offset: 0
Examples
The a(1) = 0 through a(5) = 14 subsets: . . {1,2} {1,3} {1,4} {1,2,3} {1,2,3} {2,3} {1,3,4} {1,2,3} {1,2,3,4} {1,2,4} {1,3,4} {1,4,5} {2,3,4} {2,3,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} {1,2,3,4,5}
Links
- Index entries for linear recurrences with constant coefficients, signature (2,3,-6).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#,{2}],n]&]],{n,0,10}]
-
Python
def A365544(n): return (1<
>1)<<1 if n&1 else 3**(n-1>>1)<<2) if n else 0 # Chai Wah Wu, Aug 30 2024
Formula
a(n) = 2^n - A068911(n).
From Alois P. Heinz, Aug 30 2024: (Start)
G.f.: 2*x^3/((2*x-1)*(3*x^2-1)).
a(n) = 2 * A167762(n-1) for n>=1. (End)