A008967 Coefficients of Gaussian polynomials q_binomial(n-2, 2). Also triangle of distribution of rank sums: Wilcoxon's statistic. Irregular triangle read by rows.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
Offset: 4
Examples
1; 1,1,1; 1,1,2,1,1; 1,1,2,2,2,1,1; 1,1,2,2,3,2,2,1,1; 1,1,2,2,3,3,3,2,2,1,1; ... Partitions: row p=2 and column w=2 has entry 2 because the 2 solutions of the two equations mentioned in a comment above are: m_0 = 0, m_1 = 2, m_2 = 0 and m_0 = 1, m_1 = 0, m_2 = 1. - _Wolfdieter Lang_, Dec 01 2012
References
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 242.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 236.
- T. Hawkins, Emergence of the Theory of Lie Groups, Springer 2000, ch. 7.4, p. 260-5.
Links
- John Tyler Rascoe, Rows n = 4..103, flattened
- A. Cayley, A Second Memoir Upon Quantics, Phil. Trans. R. Soc. London, 146 (1856) 101-126.
- Eric Weisstein's World of Mathematics, q-Binomial Coefficient.
- Index entries for sequences related to dominoes
Crossrefs
Programs
-
Maple
qBinom := proc(n,m,q) mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ; factor(%) ; expand(%) ; end proc: A008967 := proc(n,k) coeftayl( qBinom(n,2,q),q=0,k ) ; end proc: seq(seq( A008967(n,k),k=0..2*n-4),n=2..10) ; # assumes offset 2. R. J. Mathar, Oct 13 2011
-
Mathematica
rmax = 11; f[r_] := Product[(x^i - x^(r+1))/(1-x^i), {i, 1, r-2}]/ x^((r-1)*(r-2)/2); row[r_] := CoefficientList[ Series[ f[r], {x, 0, 2rmax}], x]; Flatten[ Table[ row[r], {r, 2, rmax}]] (* Jean-François Alcover, Oct 13 2011, after given formula *) T[n_, k_] := SeriesCoefficient[QBinomial[n - 2, 2, q], {q, 0, k}]; Table[T[n, k], {n, 4, 13}, {k, 0, 2 n - 8}] // Flatten (* Jean-François Alcover, Aug 20 2019 *) Table[Length[Select[Subsets[Range[n],{2}],Total[#]==k&]],{n,2,15},{k,3,2n-1}] (* Gus Wiseman, Sep 20 2023 *)
-
SageMath
print(flatten([q_binomial(n-2, 2).list() for n in (4..13)])) # Peter Luschny, Oct 23 2019
Formula
Let f(r) = Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2) / x^((r-1)*(r-2)/2); then expanding f(r) in powers of x and taking coefficients gives the successive rows of this triangle (with a different offset).
Expanding (q^n - 1)(q^(n+1) - 1)/((q - 1)(q^2 - 1)) in powers of q and taking coefficients gives the n-th row of the triangle. Ordinary generating function: 1/((1-x)(1-qx)(1-q^2x)) = 1 + x(1 + q + q^2) + x^2(1 + q + 2q^2 + q^3 + q^4) + .... - Peter Bala, Sep 23 2007
For n >= 2, let a(n,i) denote the i-th entry of the (n-1)-st row of this triangle; for every 0 <= i <= n-2, a(n,i) = a(n,2(n-2)-i) = ceiling((i+1)/2). - Christian Barrientos, Aug 08 2019
Extensions
More terms from Christian Barrientos, Aug 08 2019
Comments