A238628
Number of partitions p of n such that n - max(p) is a part of p.
Original entry on oeis.org
0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1
a(6) counts these partitions: 51, 42, 33, 321, 3111.
The complement is counted by
A365825.
These partitions are ranked by
A366318.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
-
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
-
a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
-
from sympy.utilities.iterables import partitions
def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
A365828
Number of strict integer partitions of 2n not containing n.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55, 78, 108, 148, 201, 270, 359, 475, 623, 811, 1050, 1351, 1728, 2201, 2789, 3517, 4418, 5527, 6887, 8553, 10585, 13055, 16055, 19685, 24065, 29343, 35685, 43287, 52387, 63253, 76200, 91605, 109897, 131575, 157231, 187539
Offset: 0
The a(0) = 1 through a(6) = 12 strict partitions:
() (2) (4) (6) (8) (10) (12)
(3,1) (4,2) (5,3) (6,4) (7,5)
(5,1) (6,2) (7,3) (8,4)
(7,1) (8,2) (9,3)
(5,2,1) (9,1) (10,2)
(6,3,1) (11,1)
(7,2,1) (5,4,3)
(4,3,2,1) (7,3,2)
(7,4,1)
(8,3,1)
(9,2,1)
(5,4,2,1)
The complement is counted by
A111133.
A000009 counts strict integer partitions.
A046663 counts partitions with no submultiset summing to k, strict
A365663.
-
Table[Length[Select[IntegerPartitions[2n],UnsameQ@@#&&FreeQ[#,n]&]],{n,0,30}]
A365825
Number of integer partitions of n that are not of length 2 and do not contain n/2.
Original entry on oeis.org
1, 1, 1, 2, 2, 5, 6, 12, 14, 26, 31, 51, 61, 95, 114, 169, 202, 289, 347, 481, 576, 782, 936, 1244, 1487, 1946, 2323, 2997, 3570, 4551, 5414, 6827, 8103, 10127, 11997, 14866, 17575, 21619, 25507, 31166, 36692, 44563, 52362, 63240, 74152, 89112, 104281, 124731
Offset: 0
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(111) (1111) (221) (222) (322) (332)
(311) (411) (331) (521)
(2111) (2211) (421) (611)
(11111) (21111) (511) (2222)
(111111) (2221) (3221)
(3211) (3311)
(4111) (5111)
(22111) (22211)
(31111) (32111)
(211111) (221111)
(1111111) (311111)
(2111111)
(11111111)
The complement is counted by
A238628.
A046663 counts partitions with no submultiset summing to k, strict
A365663.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
-
Table[Length[Select[IntegerPartitions[n],Length[#]!=2&&FreeQ[#,n/2]&]],{n,0,15}]
-
from sympy import npartitions
def A365825(n): return npartitions(n)-(m:=n>>1)-(0 if n&1 else npartitions(m)-1) # Chai Wah Wu, Sep 23 2023
A365827
Number of strict integer partitions of n whose length is not 2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 25, 30, 38, 45, 55, 66, 79, 93, 111, 130, 153, 179, 209, 242, 282, 325, 375, 432, 496, 568, 651, 742, 846, 963, 1094, 1240, 1406, 1589, 1795, 2026, 2282, 2567, 2887, 3240, 3634, 4072, 4557, 5094, 5692, 6351
Offset: 0
The a(5) = 1 through a(13) = 12 strict partitions (A..D = 10..13):
(5) (6) (7) (8) (9) (A) (B) (C) (D)
(321) (421) (431) (432) (532) (542) (543) (643)
(521) (531) (541) (632) (642) (652)
(621) (631) (641) (651) (742)
(721) (731) (732) (751)
(4321) (821) (741) (832)
(5321) (831) (841)
(921) (931)
(5421) (A21)
(6321) (5431)
(6421)
(7321)
The complement is counted by
A140106 shifted left.
A046663 counts partitions with no submultiset summing to k, strict
A365663.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[#]!=2&]],{n,0,30}]
A365826
Number of strict integer partitions of n that are not of length 2 and do not contain n/2.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 30, 31, 45, 46, 66, 68, 93, 97, 130, 136, 179, 188, 242, 256, 325, 344, 432, 459, 568, 606, 742, 793, 963, 1031, 1240, 1331, 1589, 1707, 2026, 2179, 2567, 2766, 3240, 3493, 4072, 4393, 5094, 5501, 6351
Offset: 0
The a(6) = 1 through a(12) = 7 strict partitions:
(6) (7) (8) (9) (10) (11) (12)
(4,2,1) (5,2,1) (4,3,2) (6,3,1) (5,4,2) (5,4,3)
(5,3,1) (7,2,1) (6,3,2) (7,3,2)
(6,2,1) (4,3,2,1) (6,4,1) (7,4,1)
(7,3,1) (8,3,1)
(8,2,1) (9,2,1)
(5,3,2,1) (5,4,2,1)
The complement is counted by
A365659.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
Cf.
A004526,
A005408,
A008967,
A035363,
A058984,
A086543,
A100959,
A344415,
A365376,
A365377,
A365543.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Tuples[#,2],n]&]], {n,0,30}]
A365829
Squarefree non-semiprimes.
Original entry on oeis.org
1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, 53, 59, 61, 66, 67, 70, 71, 73, 78, 79, 83, 89, 97, 101, 102, 103, 105, 107, 109, 110, 113, 114, 127, 130, 131, 137, 138, 139, 149, 151, 154, 157, 163, 165, 167, 170, 173, 174, 179, 181, 182, 186
Offset: 1
The terms together with their prime indices begin:
1: {} 43: {14} 102: {1,2,7}
2: {1} 47: {15} 103: {27}
3: {2} 53: {16} 105: {2,3,4}
5: {3} 59: {17} 107: {28}
7: {4} 61: {18} 109: {29}
11: {5} 66: {1,2,5} 110: {1,3,5}
13: {6} 67: {19} 113: {30}
17: {7} 70: {1,3,4} 114: {1,2,8}
19: {8} 71: {20} 127: {31}
23: {9} 73: {21} 130: {1,3,6}
29: {10} 78: {1,2,6} 131: {32}
30: {1,2,3} 79: {22} 137: {33}
31: {11} 83: {23} 138: {1,2,9}
37: {12} 89: {24} 139: {34}
41: {13} 97: {25} 149: {35}
42: {1,2,4} 101: {26} 151: {36}
First condition alone is
A005117 (squarefree).
Second condition alone is
A100959 (non-semiprime).
The nonprime case is 1 followed by
A350352.
-
Select[Range[100],SquareFreeQ[#]&&PrimeOmega[#]!=2&]
-
isok(k) = my(f=factor(k)); issquarefree(f) && (bigomega(f) != 2); \\ Michel Marcus, Oct 07 2023
Showing 1-6 of 6 results.
Comments