cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365552 The number of exponentially odd divisors of the powerful part of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 08 2023

Keywords

Comments

First differs from A095691 at n = 512.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, Floor[(e + 3)/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x == 1, 1, (x+3)\2), factor(n)[, 2]));

Formula

a(n) = A322483(A057521(n)).
Multiplicative with a(p) = 1 and a(p^e) = floor((e+3)/2) for e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s) * Product_{p prime} (1 + 1/p^(3*s) - 1/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4) = 1.80989829762278336163... .