A365590
Number of n X n Boolean relation matrices such that each of the diagonal blocks of its Frobenius normal form is either a 1 block or a 0 block.
Original entry on oeis.org
1, 2, 13, 243, 11998, 1477763, 436610299, 300960642300, 474171878424571, 1680899431189662775, 13241419272545722904788, 229482664065433754849099977, 8677282817864146616211588609715, 710901968198799834001047038898570250
Offset: 0
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
-
nn = 13; B[n_] := n! 2^Binomial[n, 2]; ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(Exp[x] - 1 + x)]], {x, 0, nn}], x]
A366141
Triangular array read by rows: T(n,k) is the number of Boolean relation matrices such that all of the blocks of its Frobenius normal form are 0-blocks or 1-blocks and that have exactly k 1-blocks on the diagonal, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 7, 3, 25, 85, 84, 25, 543, 2335, 3579, 2322, 543, 29281, 152101, 310020, 309725, 151835, 29281, 3781503, 23139487, 58538763, 78349050, 58514700, 23128233, 3781503, 1138779265, 8051910805, 24318772884, 40667112045, 40664902810, 24315521720, 8050866418, 1138779265
Offset: 0
Triangle begins ...
1;
1, 1;
3, 7, 3;
25, 85, 84, 25;
543, 2335, 3579, 2322, 543;
29281, 152101, 310020, 309725, 151835, 29281;
3781503, 23139487, 58538763, 78349050, 58514700, 23128233, 3781503;
...
-
nn = 6; B[n_] := 2^Binomial[n, 2] n!; dags=Select[Import["https://oeis.org/A003024/b003024.txt", "Table"],
Length@# == 2 &][[All, 2]]; d[x_] := Total[dags Table[x^i/i!, {i, 0, 40}]];
Map[Select[#, # > 0 &] &,Table[n!, {n, 0, nn}] CoefficientList[
Series[d[y (Exp[x] - 1) + x], {x, 0, nn}], {x, y}]] // Grid
A369397
Number of binary relations R on [n] such that the (unique) idempotent in {R,R^2,R^3,...} is an equivalence relation.
Original entry on oeis.org
1, 1, 5, 157, 26345, 18218521, 47136254765, 451286947588597, 16264532016440908625, 2253156851039460378774961, 1219026648017155982267265596885, 2601923405098893502520360223043594957, 22040885615442635622424409144799379027505465
Offset: 0
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- S. Schwarz, On the semigroup of binary relations on a finite set , Czechoslovak Mathematical Journal, 1970.
Cf.
A366866 (binary relations R on [n] such that the (unique) idempotent in {R,R^2,R^3,...} is a quasiorder),
A365534,
A366218,
A365590,
A355612,
A365593,
A366252,
A366350,
A366218.
-
nn = 12; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
Table[n!, {n, 0, nn}] CoefficientList[Series[Exp [s[2 x] - x], {x, 0, nn}], x]
Showing 1-3 of 3 results.
Comments