cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A334282 Number of properly colored labeled graphs on n nodes so that the color function is surjective onto {c_1,c_2,...,c_k} for some k, 1<=k<=n.

Original entry on oeis.org

1, 1, 5, 73, 2849, 277921, 65067905, 35545840513, 44384640206849, 124697899490480641, 778525887500557625345, 10693248499002776513697793, 320453350845793018626300755969, 20807125028666778079876193487790081, 2909872870574162514727072641529432735745
Offset: 0

Views

Author

Geoffrey Critzer, Apr 21 2020

Keywords

Comments

Also 1 together with the row sums of A046860.
A binary relation R on [n] is periodic iff there is a d>=2 such that R^d = R. Let A be the class of non-arcless strongly connected periodic relations (A000629). Then a(n) is the number of binary relations on [n] whose strongly connected components are in A. - Geoffrey Critzer, Dec 12 2023

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`([n, k]=[0$2], 1,
          add(binomial(n, r)*2^(r*(n-r))*b(r, k-1), r=0..n-1))
        end:
    a:= n-> add(b(n,k), k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Apr 21 2020
  • Mathematica
    nn = 15; e2[x_] := Sum[x^n/(n! 2^Binomial[n, 2]), {n, 0, nn}];
    Table[n! 2^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - (e2[x] - 1)), {x, 0, nn}], x]

Formula

Sum_{n>=0} a_n*x^n/(n!*2^C(n,2)) = 1/(2-Sum_{n>=0} x^n/(n!*2^C(n,2))).

A365593 Number of n X n Boolean relation matrices such that every block of its Frobenius normal form is either a 0 block or a 1 block.

Original entry on oeis.org

1, 2, 13, 219, 9322, 982243, 249233239, 148346645212, 202688186994599, 624913864623500599, 4289324010827093793808, 64841661094150427710360745, 2140002760057211517052090865983, 153082134018816602622335941790247946, 23590554099141037133024176892280338280237
Offset: 0

Views

Author

Geoffrey Critzer, Sep 10 2023

Keywords

Comments

A 1(0) block is such that every entry in the block is 1(0). If a Boolean relation matrix R is limit dominating then it must be that every block of R is either a 0 block or a 1 block. See Theorem 1.2 in Gregory, Kirkland, and Pullman.
Conjecture: lim_n->inf a(n)/(A003024(n)*2^n) = 1. In other words, almost all of the relations counted by this sequence have n strongly connected components. - Geoffrey Critzer, Sep 30 2023

Crossrefs

Programs

  • Mathematica
    nn = 12; d[x_] :=Total[Cases[Import["https://oeis.org/A003024/b003024.txt",
          "Table"], {, }][[All, 2]]*Table[x^(i - 1)/(i - 1)!, {i, 1, 41}]];
    Range[0, nn]! CoefficientList[Series[d[Exp[x] - 1 + x], {x, 0, nn}],x]

Formula

E.g.f.: D(exp(x)-1+x) where D(x) is the e.g.f. for A003024.

A369397 Number of binary relations R on [n] such that the (unique) idempotent in {R,R^2,R^3,...} is an equivalence relation.

Original entry on oeis.org

1, 1, 5, 157, 26345, 18218521, 47136254765, 451286947588597, 16264532016440908625, 2253156851039460378774961, 1219026648017155982267265596885, 2601923405098893502520360223043594957, 22040885615442635622424409144799379027505465
Offset: 0

Views

Author

Geoffrey Critzer, Jan 22 2024

Keywords

Comments

Equivalently, a(n) is the number of binary relations R on [n] such that the Frobenius normal form has no 0-blocks on the diagonal and all off diagonal blocks are 0-blocks.

Crossrefs

Cf. A366866 (binary relations R on [n] such that the (unique) idempotent in {R,R^2,R^3,...} is a quasiorder), A365534, A366218, A365590, A355612, A365593, A366252, A366350, A366218.

Programs

  • Mathematica
    nn = 12; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
    Table[n!, {n, 0, nn}] CoefficientList[Series[Exp [s[2 x] - x], {x, 0, nn}], x]

Formula

E.g.f.: exp(s(2x)-x) where s(x) is the e.g.f. for A003030.
Showing 1-3 of 3 results.