A365606 Number of degree 2 vertices in the n-Sierpinski carpet graph.
8, 20, 84, 500, 3540, 26996, 212052, 1684724, 13442772, 107437172, 859182420, 6872514548, 54977282004, 439809752948, 3518452514388, 28147543587572, 225180119118036, 1801440264196724, 14411520047331156, 115292154179921396, 922337214843187668, 7378697662956950900, 59029581136289955924
Offset: 1
Examples
The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices. Thus a(1) = 8.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, SierpiĆski Carpet Graph
- Index entries for linear recurrences with constant coefficients, signature (12,-35,24).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{12,-35,24},{8,20,84},30] (* Paolo Xausa, Oct 16 2023 *)
-
Python
def A365606(n): return ((1<<3*n-1)+(3**(n-1)<<4))//5+4 # Chai Wah Wu, Nov 27 2023
Comments