A365662 Number of ordered pairs of disjoint strict integer partitions of n.
1, 0, 0, 2, 2, 6, 8, 14, 18, 32, 42, 66, 92, 136, 190, 280, 374, 532, 744, 1014, 1366, 1896, 2512, 3384, 4526, 6006, 7910, 10496, 13648, 17842, 23338, 30116, 38826, 50256, 64298, 82258, 105156, 133480, 169392, 214778, 270620, 340554, 428772, 536302, 670522
Offset: 0
Keywords
Examples
The a(0) = 1 through a(7) = 14 pairs: ()() . . (21)(3) (31)(4) (32)(5) (42)(6) (43)(7) (3)(21) (4)(31) (41)(5) (51)(6) (52)(7) (5)(32) (6)(42) (61)(7) (5)(41) (6)(51) (7)(43) (32)(41) (321)(6) (7)(52) (41)(32) (42)(51) (7)(61) (51)(42) (421)(7) (6)(321) (43)(52) (43)(61) (52)(43) (52)(61) (61)(43) (61)(52) (7)(421)
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2], Intersection@@#=={}&]], {n,0,15}] Table[SeriesCoefficient[Product[(1 + x^k + y^k), {k, 1, n}], {x, 0, n}, {y, 0, n}], {n, 0, 50}] (* Vaclav Kotesovec, Apr 24 2025 *)
Formula
a(n) = 2*A108796(n) for n > 1.
a(n) = [(x*y)^n] Product_{k>=1} (1 + x^k + y^k). - Ilya Gutkovskiy, Apr 24 2025
Comments