cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365667 Expansion of Sum_{0

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 40, 64, 100, 154, 232, 332, 480, 680, 944, 1304, 1774, 2384, 3180, 4200, 5488, 7120, 9160, 11680, 14869, 18740, 23468, 29280, 36278, 44720, 54904, 67040, 81464, 98658, 118936, 142792, 170902, 203760, 242120, 286624, 338366, 398160, 467148
Offset: 25

Views

Author

Seiichi Manyama, Sep 15 2023

Keywords

Crossrefs

A diagonal of A060047.
Cf. A015128.

Programs

  • Mathematica
    nmax = 80; Drop[CoefficientList[Series[-1/5 * Sum[(-1)^k*k*Binomial[k + 4, 9]*x^(k^2), {k, 5, nmax}]/(1 + 2*Sum[(-x)^(k^2), {k, 1, nmax}]), {x, 0, nmax}], x], 25] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

G.f.: -(1/5) * ( Sum_{k>=5} (-1)^k * k * binomial(k+4,9) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ).