cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365711 Dirichlet inverse of balanced ternary enumeration of integers (A117966).

Original entry on oeis.org

1, 1, -3, -3, -2, -3, 2, -3, 0, -14, -8, 9, -13, -7, 6, 6, -5, 0, 8, 0, -6, -11, 7, 9, 15, -13, 0, -60, -26, 42, -31, -30, 24, -35, -31, 0, -37, -19, 39, 54, -38, 21, -34, 18, 0, -5, -17, -18, -18, 54, 15, 75, -14, 0, 58, 3, -24, -29, 25, 0, 29, -31, 0, -57, 71, 33, 14, -9, -21, -46, 22, 0, 35, -37, -45, -78, 2, 39
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2023

Keywords

Crossrefs

Programs

Formula

a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA117966(n/d) * a(d).
A011655(abs(a(n))) = A359377(n).

A365714 Sum of reversing binary value of n (A065620) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, -4, 0, 8, 1, -12, 0, -4, 0, 12, 6, 16, 0, -30, 0, -12, -6, 28, 0, -8, 9, 20, 15, 12, 0, -32, 0, 32, -14, -60, -18, -28, 0, 60, -10, -24, 0, 64, 0, 28, 61, -52, 0, -16, 9, 18, 30, 20, 0, -66, -42, 24, -30, -44, 0, -20, 0, 44, -77, 64, -30, -96, 0, -60, 26, 160, 0, -56, 0, 116, 39, 60, 42, -96, 0, -48, 89
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2023

Keywords

Crossrefs

Cf. also A365712.

Programs

Formula

a(n) = A065620(n) + A365713(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A065620(d) * A365713(n/d).
a(4*n)/4 = A065620(n).

A365804 Sum of bijective base-3 reverse of n (A263273) and its Dirichlet inverse.

Original entry on oeis.org

2, 0, 0, 4, 0, 12, 0, 8, 9, 28, 0, 12, 0, 20, 42, 16, 0, 18, 0, 12, 30, 76, 0, 24, 49, 52, 27, 68, 0, -24, 0, 32, 114, 100, 70, 36, 0, 44, 78, 40, 0, 72, 0, -20, 63, 92, 0, 48, 25, -86, 150, 52, 0, 54, 266, 24, 66, 220, 0, 84, 0, 148, 45, 192, 182, -144, 0, 84, 138, 280, 0, 72, 0, 124, -45, 188, 190, 0, 0, 80, 81
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2023

Keywords

Crossrefs

Cf. also A365712.

Programs

Formula

a(n) = A263273(n) + A365803(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1A263273(d) * A365803(n/d).
Showing 1-3 of 3 results.