A365748 a(n) = A365742(10^n).
1, 3, 10, 30, 72, 247, 937, 2844, 9261, 30742
Offset: 0
Links
- R. Baker and G. Harman, Shifted primes without large prime factors, Acta Arithmetica 83 (1998), pp. 331-361.
- Paul Pollack, Carl Pomerance, and Enrique Treviño, Sets of monotonicity for Euler's totient function, preprint. See M0(n).
- Paul Pollack, Carl Pomerance, and Enrique Treviño, Sets of monotonicity for Euler's totient function, Ramanujan J. 30 (2013), no. 3, 379-398.
- Terence Tao, Monotone non-decreasing sequences of the Euler totient function, arXiv:2309.02325 [math.NT], 2023.
Crossrefs
Programs
-
Python
from collections import Counter from sympy import totient def A365748(n): return max(Counter(totient(i) for i in range(1,10**n+1)).values())
Formula
Baker and Harman showed that a(n) >= 10^(0.7038n) for all large enough n. - Chai Wah Wu, Oct 17 2023