cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365764 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1+x) ).

Original entry on oeis.org

1, 4, 25, 188, 1563, 13840, 127972, 1221260, 11938471, 118936100, 1203155633, 12325599632, 127611357300, 1333153669632, 14035828918560, 148773617605036, 1586305110768863, 17002975960876300, 183102052226442475, 1980078493171083292, 21493846031259095539
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[(1/x) *InverseSeries[Series[x*(1-x)^3/(1+x),{x,0,21}]],x] (* Stefano Spezia, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+1, k)*binomial(4*n-k+2, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+1,k) * binomial(4*n-k+2,n-k) = (1/(n+1)) * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(n+1,n-k).

A365766 Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x) ).

Original entry on oeis.org

1, 6, 56, 626, 7721, 101322, 1387648, 19606874, 283711805, 4183074796, 62618441024, 949174260118, 14539621490403, 224721722650224, 3500129695446816, 54882906729334378, 865664769346769005, 13725517938819785298, 218639429113140366968
Offset: 0

Views

Author

Seiichi Manyama, Sep 18 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+1, k)*binomial(6*n-k+4, n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+1,k) * binomial(6*n-k+4,n-k) = (1/(n+1)) * Sum_{k=0..n} binomial(5*n+k+4,k) * binomial(n+1,n-k).
Showing 1-2 of 2 results.