cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365777 Expansion of e.g.f. (exp(2*x) / (2 - exp(2*x)))^(3/4).

Original entry on oeis.org

1, 3, 15, 117, 1257, 17163, 284055, 5522877, 123344817, 3111071283, 87454712895, 2710961144037, 91862770847577, 3378032307195003, 133970268354806535, 5699864583381903597, 258956671286986317537, 12512342291081486212323, 640686944845321006836975
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-2)^(n-k)*prod(j=0, k-1, 4*j+3)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (-2)^(n-k) * (Product_{j=0..k-1} (4*j+3)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-2)^k * (1/2 * k/n - 2) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 3*a(n-1) + Sum_{k=1..n-1} 2^k * binomial(n-1,k) * a(n-k).

A365782 Expansion of e.g.f. 1 / (3 - 2 * exp(2*x))^(1/4).

Original entry on oeis.org

1, 1, 7, 79, 1273, 26761, 694207, 21426679, 766897873, 31228168561, 1425551226007, 72103869999679, 4002503339419273, 241916116809963961, 15814645240322565007, 1111830805751346135079, 83649120614618202845473, 6705916845517938558372961
Offset: 0

Views

Author

Seiichi Manyama, Nov 16 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*prod(j=0, k-1, 4*j+1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} 2^(n-k) * (Product_{j=0..k-1} (4*j+1)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} 2^k * (2 - 3/2 * k/n) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = a(n-1) - 3*Sum_{k=1..n-1} (-2)^k * binomial(n-1,k) * a(n-k).
Showing 1-2 of 2 results.