A365797 Decimal expansion of smallest positive number x such that Gamma(x) = 2.
4, 4, 2, 8, 7, 7, 3, 9, 6, 4, 8, 4, 7, 2, 7, 4, 3, 7, 4, 5, 2, 0, 3, 2, 5, 1, 6, 5, 2, 0, 6, 0, 5, 6, 7, 1, 7, 1, 0, 3, 6, 4, 5, 3, 8, 0, 6, 6, 3, 6, 6, 4, 0, 2, 9, 9, 1, 2, 3, 0, 7, 1, 9, 8, 9, 5, 8, 5, 2, 4, 8, 2, 2, 8, 4, 1, 7, 4, 0, 8, 0, 4, 0, 7, 7, 0, 0, 9, 3, 7, 7, 2, 9, 8, 4, 4, 8, 2, 2, 1, 0, 8, 3, 6, 3, 4
Offset: 0
Examples
0.4428773964847274374520325165206056717103645380663664...
Links
- K. Amenyo Folitse, David J. Jeffrey, and Robert M. Corless, Properties and Computation of the Functional Inverse of Gamma, 2017 19th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). p. 65.
- Mitsuru Uchiyama, The principal inverse of the gamma function, Proc. Amer. Math. Soc. 140 (2012), 1343-1348.
Programs
-
Maple
Digits:= 140: with(RootFinding): NextZero(x -> (x - 1)! - 2, 0);
-
Mathematica
FindRoot[-2 + (-1 + x)! == 0, {x, 0, 1}, WorkingPrecision -> 15]
-
PARI
solve(x=0.1, 1, gamma(x)-2) \\ Michel Marcus, Sep 19 2023
Formula
Equals ((((1/2)!/2)!/2)!/2)!/2...
Proof: Since y = y! / x we substitute the expression into itself to obtain an iterative scheme for the inverse gamma function.
Equals (1/(2*Pi))*Integral_{x=-oo..oo} log((2-Gamma(i*x))/(2-Gamma(1+i*x))) dx. Proof: Follows from writing the inverse gamma function using the Lagrange inversion theorem together with Cauchy's formula for differentiation. - David Ulgenes, Feb 11 2024
Comments