cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A365816 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^3 / (1 - 3 * A(x)).

Original entry on oeis.org

0, 1, 6, 57, 658, 8442, 115692, 1658505, 24565530, 372999198, 5774883348, 90821581578, 1446901409268, 23301338376916, 378711707274072, 6203898306232233, 102329366764727658, 1698047225583890550, 28327664136201303300, 474821679792884860590, 7992739387298462213340
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2023

Keywords

Comments

Reversion of g.f. for hexagonal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^3/(1 - 3 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 3 x)/(1 + x)^3, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[3 n, n - k - 1] 3^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) * 3^k for n > 0.
a(n) ~ 6^(3*n + 1/2) / (sqrt((481 + 133*sqrt(13))*Pi) * n^(3/2) * (13*sqrt(13) - 35)^n). - Vaclav Kotesovec, Sep 26 2023

A366016 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 4 * A(x)).

Original entry on oeis.org

0, 1, 8, 102, 1580, 27193, 499828, 9609372, 190869948, 3886281300, 80681111940, 1701418017390, 36345240847188, 784821812522062, 17103169093916120, 375670490644949624, 8308349385885678684, 184856293637482503660, 4134886240989315235840, 92928784113832360511800, 2097399158679611824619120
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for heptagonal pyramidal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^4/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^4, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * 4^k for n > 0.
a(n) ~ sqrt(163 - 1521/sqrt(89)) * (4933 + 801*sqrt(89))^n / (sqrt(Pi) * n^(3/2) * 2^(9*n + 9/2)). - Vaclav Kotesovec, Sep 27 2023

A365818 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^3 / (1 - 5 * A(x)).

Original entry on oeis.org

0, 1, 8, 107, 1760, 32298, 634128, 13034247, 276943568, 6033834950, 134069957840, 3026476515790, 69213144181888, 1600157697995092, 37337615574348960, 878166685063548639, 20797051344280763184, 495509950454603339310, 11869278747340342255440, 285669061791469915886250, 6904850429493240677872320
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2023

Keywords

Comments

Reversion of g.f. for octagonal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^3/(1 - 5 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 5 x)/(1 + x)^3, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[3 n, n - k - 1] 5^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) * 5^k for n > 0.
a(n) ~ 3^(3/2) * 2^(n - 1/2) * (154 + 31*sqrt(31))^n / (sqrt((2821 + 506*sqrt(31))*Pi) * n^(3/2) * 5^(2*n)). - Vaclav Kotesovec, Sep 26 2023

A366036 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 4 * A(x)).

Original entry on oeis.org

0, 1, 9, 127, 2165, 40914, 824859, 17383720, 378373437, 8440227235, 191938302578, 4433259845898, 103716352560119, 2452629475989840, 58529969579982600, 1407775987050271920, 34092047564798908045, 830565580516900384329, 20342106952028722530603, 500573735323751221019425, 12370242700776737398052970
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for 4-dimensional figurate numbers A002418 (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^5, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(5*n,n-k-1) * 4^k for n > 0.
a(n) ~ sqrt(34*sqrt(6) - 81) * 2^(n - 11/4) * 3^(n - 5/4) * (3/2 - 1/sqrt(6))^(5*n) / (sqrt(Pi) * n^(3/2) * (3*sqrt(6) - 7)^n). - Vaclav Kotesovec, Sep 27 2023

A366203 a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) * (n-3)^k.

Original entry on oeis.org

1, 2, 12, 156, 3507, 115692, 5066364, 276943568, 18152243967, 1387267590540, 121106707350928, 11889022355301672, 1296359140925188212, 155440199716271334648, 20327081449263918542412, 2879054747404226046119448, 439060192463001381367975215, 71727764882350305085962745740
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 04 2023

Keywords

Comments

a(n) is the coefficient of x^n in expansion of series reversion of g.f. for n-gonal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[1/n Sum[Binomial[n + k - 1, k] Binomial[3 n, n - k - 1] (n - 3)^k, {k, 0, n - 1}], {n, 1, 18}]
    Table[Binomial[3 n, n - 1] Hypergeometric2F1[1 - n, n, 2 (n + 1), 3 - n]/n, {n, 1, 18}]
    Table[SeriesCoefficient[InverseSeries[Series[x (1 - (n - 3) x)/(1 + x)^3, {x, 0, n}], x], {x, 0, n}], {n, 1, 18}]

Formula

a(n) = [x^n] Series_Reversion( x * (1 - (n - 3) * x) / (1 + x)^3 ).
Showing 1-5 of 5 results.