A365832 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with k distinct sums of nonempty subsets.
1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 3, 0, 0, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 0, 1, 0, 4, 0, 0, 0, 3, 0, 0, 0, 1, 0, 4, 0, 0, 2, 2, 0, 0, 1, 0, 1, 0, 5, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 5, 0, 0, 2, 5, 0, 0, 0, 0, 2
Offset: 0
Examples
The partition (7,6,1) has sums 1, 6, 7, 8, 13, 14, so is counted under T(14,6). Triangle begins: 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 2 0 0 0 1 0 2 0 0 1 0 1 0 3 0 0 0 1 0 1 0 3 0 0 1 1 0 0 1 0 4 0 0 0 3 0 0 0 1 0 4 0 0 2 2 0 0 1 0 1 0 5 0 0 0 5 0 0 0 1 0 1 0 5 0 0 2 5 0 0 0 0 2 0 1 0 6 0 0 0 8 0 0 0 1 0 2 0 1 0 6 0 0 3 7 0 0 0 0 3 1 1 0 1 0 7 0 0 0 12 0 0 0 1 0 4 0 2 0 1 0 7 0 0 3 11 0 0 0 1 3 2 2 1 1 0 1 0 8 0 0 0 16 0 0 0 1 0 7 0 3 0 2 0 1 0 8 0 0 4 15 0 0 0 1 3 3 6 2 0 0 3 0 1 0 9 0 0 0 21 0 0 0 2 0 9 0 7 0 1 0 4 0 1 0 9 0 0 4 20 0 0 1 0 4 8 5 5 0 0 2 0 5 Row n = 14 counts the following partitions (A..E = 10..14): (E) . (D1) . . (761) (B21) . . . . (6521) (8321) (7421) (C2) (752) (A31) (6431) (B3) (743) (941) (5432) (A4) (932) (95) (851) (86) (842) (653)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[Union[Total/@Rest[Subsets[#]]]]==k&]],{n,0,15},{k,0,n}]