cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A367213 Number of integer partitions of n whose length (number of parts) is not equal to the sum of any submultiset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 4, 7, 8, 12, 13, 19, 21, 29, 33, 45, 49, 67, 73, 97, 108, 139, 152, 196, 217, 274, 303, 379, 420, 523, 579, 709, 786, 960, 1061, 1285, 1423, 1714, 1885, 2265, 2498, 2966, 3280, 3881, 4268, 5049, 5548, 6507, 7170, 8391, 9194, 10744, 11778, 13677
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions are necessarily incomplete (A365924).
Are there any decreases after the initial terms?

Examples

			The a(3) = 1 through a(9) = 8 partitions:
  (3)  (4)    (5)    (6)      (7)      (8)        (9)
       (3,1)  (4,1)  (3,3)    (4,3)    (4,4)      (5,4)
                     (5,1)    (6,1)    (5,3)      (6,3)
                     (2,2,2)  (5,1,1)  (7,1)      (8,1)
                     (4,1,1)           (4,2,2)    (4,4,1)
                                       (6,1,1)    (5,2,2)
                                       (5,1,1,1)  (7,1,1)
                                                  (6,1,1,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237667 counts sum-free partitions, sum-full A237668.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365543 counts partitions of n with a subset-sum k, strict A365661.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

Extensions

a(41)-a(54) from Chai Wah Wu, Nov 13 2023

A367224 Numbers m with a divisor whose prime indices sum to bigomega(m).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 15, 16, 18, 20, 21, 24, 30, 32, 33, 36, 39, 40, 42, 45, 48, 50, 51, 54, 56, 57, 60, 64, 66, 69, 70, 72, 75, 78, 80, 81, 84, 87, 90, 93, 96, 100, 102, 105, 108, 110, 111, 112, 114, 120, 123, 125, 126, 128, 129, 130, 132, 135, 138, 140, 141
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

Also numbers m whose prime indices have a submultiset summing to bigomega(m).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367212.

Examples

			The prime indices of 24 are {1,1,1,2} with submultiset {1,1,2} summing to 4, so 24 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   12: {1,1,2}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A002865 counts partitions whose length is a part, ranks A325761.
A005117 ranks strict integer partitions, counted by A000009.
A066208 ranks partitions into odd parts, also counted by A000009.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A126796 counts complete partitions, ranks A325781.
A229816 counts partitions whose length is not a part, ranks A367107.
A237668 counts sum-full partitions, ranks A364532.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365543 counts partitions of n with a subset-sum k, strict A365661.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];
    Select[Range[100], MemberQ[Total/@prix/@Divisors[#], PrimeOmega[#]]&]

A367225 Numbers m without a divisor whose prime indices sum to bigomega(m).

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 25, 26, 27, 28, 29, 31, 34, 35, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 55, 58, 59, 61, 62, 63, 65, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 106, 107, 109, 113
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2023

Keywords

Comments

Also numbers m whose prime indices do not have a submultiset summing to bigomega(m).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367213.

Examples

			The prime indices of 24 are {1,1,1,2} with submultiset {1,1,2} summing to 4, so 24 is not in the sequence.
The terms together with their prime indices begin:
     3: {2}        29: {10}       58: {1,10}
     5: {3}        31: {11}       59: {17}
     7: {4}        34: {1,7}      61: {18}
    10: {1,3}      35: {3,4}      62: {1,11}
    11: {5}        37: {12}       63: {2,2,4}
    13: {6}        38: {1,8}      65: {3,6}
    14: {1,4}      41: {13}       67: {19}
    17: {7}        43: {14}       68: {1,1,7}
    19: {8}        44: {1,1,5}    71: {20}
    22: {1,5}      46: {1,9}      73: {21}
    23: {9}        47: {15}       74: {1,12}
    25: {3,3}      49: {4,4}      76: {1,1,8}
    26: {1,6}      52: {1,1,6}    77: {4,5}
    27: {2,2,2}    53: {16}       79: {22}
    28: {1,1,4}    55: {3,5}      82: {1,13}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A229816 counts partitions whose length is not a part, ranks A367107.
A237667 counts sum-free partitions, ranks A364531.
A365924 counts incomplete partitions, ranks A365830.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365543 counts partitions of n with a subset-sum k, strict A365661.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], FreeQ[Total/@prix/@Divisors[#], PrimeOmega[#]]&]

A367214 Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 10, 12, 14, 17, 21, 25, 30, 36, 43, 51, 60, 71, 83, 97, 113, 132, 153, 178, 205, 238, 272, 315, 360, 413, 471, 539, 613, 698, 792, 899, 1018, 1153, 1302, 1470, 1658, 1867, 2100, 2362, 2652, 2974, 3335, 3734, 4178, 4672
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367224 /\ A005117.

Examples

			The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16).
The a(1) = 1 through a(10) = 5 strict partitions:
  (1)  .  (2,1)  .  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                           (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                             (5,2,1)  (5,3,1)  (6,3,1)
                                                      (6,2,1)  (7,2,1)
                                                               (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A088809/A093971/A364534 count certain types of sum-full subsets.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A275972 counts strict knapsack partitions, non-strict A108917.
A364272 counts sum-full strict partitions, sum-free A364349.
A365925 counts subset-sums of strict partitions, non-strict A304792.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367215 Number of strict integer partitions of n whose length (number of parts) is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 8, 10, 12, 15, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 95, 109, 124, 143, 162, 185, 210, 240, 270, 308, 347, 393, 443, 500, 562, 634, 711, 798, 895, 1002, 1120, 1252, 1397, 1558, 1735, 1930, 2146, 2383, 2644, 2930, 3245
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367225 /\ A005117.

Examples

			The a(2) = 1 through a(11) = 7 strict partitions:
  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (10)     (11)
            (3,1)  (4,1)  (5,1)  (4,3)  (5,3)  (5,4)  (6,4)    (6,5)
                                 (6,1)  (7,1)  (6,3)  (7,3)    (7,4)
                                               (8,1)  (9,1)    (8,3)
                                                      (5,4,1)  (10,1)
                                                               (5,4,2)
                                                               (6,4,1)
The a(2) = 1 through a(15) = 15 strict partitions (A..F = 10..15):
  2  3  4   5   6   7   8   9   A    B    C    D    E     F
        31  41  51  43  53  54  64   65   75   76   86    87
                    61  71  63  73   74   84   85   95    96
                            81  91   83   93   94   A4    A5
                                541  A1   B1   A3   B3    B4
                                     542  642  C1   D1    C3
                                     641  651  652  752   E1
                                          741  742  761   654
                                               751  842   762
                                               841  851   852
                                                    941   861
                                                    6521  942
                                                          951
                                                          A41
                                                          7521
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A007865/A085489/A151897 count certain types of sum-free subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A237667 counts sum-free partitions, ranks A364531.
A240861 counts strict partitions with length not a part, complement A240855.
A275972 counts strict knapsack partitions, non-strict A108917.
A364349 counts sum-free strict partitions, sum-full A364272.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365663 counts strict partitions without a subset-sum k, non-strict A046663.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367221 Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 23, 24, 29, 32, 37, 41, 49, 54, 63, 72, 82, 93, 108, 122, 139, 159, 180, 204, 231, 261, 293, 331, 370, 415, 464, 518, 575, 641, 710, 789, 871, 965, 1064, 1177, 1294, 1428, 1569, 1729, 1897
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367219.

Examples

			The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
  2  3  4  5  6  7   8   9   A   B    C    D    E    F    G
                 43  53  54  64  65   75   76   86   87   97
                         63  73  74   84   85   95   96   A6
                                 83   93   94   A4   A5   B5
                                 542  642  A3   B3   B4   C4
                                           652  752  C3   D3
                                           742  842  654  754
                                                     762  862
                                                     852  952
                                                     942  A42
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365541 counts subsets containing two distinct elements summing to k.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]

A366741 Number of semi-sums of strict integer partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 5, 6, 9, 13, 21, 26, 37, 48, 63, 86, 108, 139, 175, 223, 274, 350, 422, 527, 638, 783, 939, 1146, 1371, 1648, 1957, 2341, 2770, 3285, 3867, 4552, 5353, 6262, 7314, 8529, 9924, 11511, 13354, 15423, 17825, 20529, 23628, 27116, 31139, 35615
Offset: 0

Views

Author

Gus Wiseman, Nov 05 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The strict partitions of 9 and their a(9) = 13 semi-sums:
    (9) ->
   (81) -> 9
   (72) -> 9
   (63) -> 9
  (621) -> 3,7,8
   (54) -> 9
  (531) -> 4,6,8
  (432) -> 5,6,7
		

Crossrefs

The non-strict non-binary version is A304792.
The non-binary version is A365925.
The non-strict version is A366738.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365543 counts partitions with a subset summing to k, complement A046663.
A365661 counts strict partitions w/ subset summing to k, complement A365663.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366739 counts semi-sums of prime indices, firsts A367097.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#, {2}]]]&/@Select[IntegerPartitions[n], UnsameQ@@#&]], {n,0,30}]

A367412 Triangle read by rows with all zeros removed where T(n,k) is the number of integer partitions of n with k different semi-sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 3, 3, 1, 5, 3, 2, 1, 4, 7, 2, 1, 1, 6, 7, 6, 2, 1, 6, 10, 6, 7, 1, 7, 12, 11, 8, 3, 1, 6, 16, 11, 17, 3, 2, 1, 10, 14, 20, 19, 10, 2, 1, 1, 7, 22, 17, 31, 14, 7, 2, 1, 9, 22, 27, 37, 22, 11, 6, 1, 10, 24, 27, 51, 32, 16, 15
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			Triangle begins:
  1
  1  1
  1  2
  1  3  1
  1  3  3
  1  5  3  2
  1  4  7  2  1
  1  6  7  6  2
  1  6 10  6  7
  1  7 12 11  8  3
  1  6 16 11 17  3  2
  1 10 14 20 19 10  2  1
  1  7 22 17 31 14  7  2
  1  9 22 27 37 22 11  6
  1 10 24 27 51 32 16 15
  1 11 27 39 57 43 27 22  4
  1  9 33 34 79 57 36 39  7  2
  1 13 31 51 86 77 45 62 14  4  1
Row n = 9 counts the following partitions:
  (9)  (81)         (711)       (621)      (5211)
       (72)         (6111)      (531)      (4311)
       (63)         (522)       (432)      (4221)
       (54)         (51111)     (33111)    (42111)
       (333)        (441)       (222111)   (3321)
       (111111111)  (411111)    (2211111)  (32211)
                    (3222)                 (321111)
                    (3111111)
                    (22221)
                    (21111111)
		

Crossrefs

Row sums are A000041.
Column k = 1 is A088922.
The non-binary version (with zeros) is A365658.
The strict non-binary version (with zeros) is A365832.
The corresponding rank statistic is A366739.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.
A366738 counts semi-sums of partitions, non-binary A304792.
A366741 counts semi-sums of strict partitions, non-binary A365925.

Programs

  • Mathematica
    DeleteCases[Table[Length[Select[IntegerPartitions[n], Length[Union[Total/@Subsets[#, {2}]]]==k&]], {n,10},{k,0,n}],0,2]
Showing 1-8 of 8 results.