cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A365843 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1+x)^3 ).

Original entry on oeis.org

1, 6, 54, 578, 6810, 85278, 1113854, 15004746, 206955378, 2908113974, 41484917958, 599202514578, 8745727050762, 128790559374030, 1911191826600462, 28551332345784730, 429040549473424866, 6480799118506040934, 98349636147075506006, 1498732955394826784226
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Column k=3 of A378238.
Cf. A144097.

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+k+2, k)*binomial(3*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(3*(n+1),n-k).
G.f.: B^3, where B is the g.f. of A144097.
a(n) ~ sqrt(8060 + 2651*sqrt(10)) * (223 + 70*sqrt(10))^n / (2 * sqrt(5*Pi) * n^(3/2) * 3^(3*n + 5/2)). - Vaclav Kotesovec, Nov 28 2024

A370097 a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 5, 49, 545, 6401, 77505, 956929, 11976193, 151388161, 1928363009, 24712450049, 318255628289, 4115300220929, 53396370030593, 694845537386497, 9064787191660545, 118516719269445633, 1552528215946035201, 20372392543502991361, 267736366910401413121
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k*(-1)^(n-k)*Binomial[3*n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n, k)*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^3/(1-x)^2 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)^2/(1+x)^3 ). See A365842.
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n,k). - Seiichi Manyama, Jul 31 2025
a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi*n) * 2^(n-1)). - Vaclav Kotesovec, Jul 31 2025
a(n) = Sum_{k=0..n} 2^k * binomial(2*n+k-1,k). - Seiichi Manyama, Aug 01 2025
a(n) = [x^n] 1/((1-x) * (1-2*x)^(2*n)). - Seiichi Manyama, Aug 09 2025

A365844 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1+x)^3 ).

Original entry on oeis.org

1, 7, 74, 931, 12894, 189798, 2913980, 46140347, 748022678, 12354604274, 207148525484, 3516699607022, 60328735646620, 1044182053141612, 18212018061261600, 319771572646888811, 5647677332549552870, 100266714048150595770, 1788366334642393259292
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+k+3, k)*binomial(3*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(3*(n+1),n-k).

A365845 Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^3 ).

Original entry on oeis.org

1, 8, 97, 1400, 22243, 375584, 6614508, 120136984, 2234022775, 42322629960, 813939319697, 15849232257824, 311858145053076, 6191083938051840, 123852349440862504, 2494251111318893400, 50526944132627936127, 1028872756710478785560
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*n+k+4, k)*binomial(3*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(5*n+k+4,k) * binomial(3*(n+1),n-k).
Showing 1-4 of 4 results.