A365847
Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1+x)^4 ).
Original entry on oeis.org
1, 8, 96, 1368, 21440, 356968, 6197408, 110947768, 2033381760, 37963483592, 719495148768, 13806129179928, 267693334199616, 5236670783633960, 103227182363423008, 2048451544990578552, 40888361539777714944, 820400146864231266184
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*n+k+3, k)*binomial(4*(n+1), n-k))/(n+1);
A378238
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(3*n+r+k,n)/(3*n+r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 14, 0, 1, 6, 32, 134, 0, 1, 8, 54, 324, 1482, 0, 1, 10, 80, 578, 3696, 17818, 0, 1, 12, 110, 904, 6810, 45316, 226214, 0, 1, 14, 144, 1310, 11008, 85278, 583152, 2984206, 0, 1, 16, 182, 1804, 16490, 140936, 1113854, 7769348, 40503890, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 14, 32, 54, 80, 110, 144, ...
0, 134, 324, 578, 904, 1310, 1804, ...
0, 1482, 3696, 6810, 11008, 16490, 23472, ...
0, 17818, 45316, 85278, 140936, 216002, 314700, ...
0, 226214, 583152, 1113854, 1870352, 2914790, 4320608, ...
T(n,n) gives 1/4 *
A370102(n) for n > 0.
-
T(n, k, t=3, u=1) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A369264
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1+x^2)^3 ).
Original entry on oeis.org
1, 3, 18, 127, 993, 8268, 71888, 645087, 5929527, 55544315, 528319662, 5088941628, 49539243900, 486606281496, 4816930145376, 48005470976271, 481262635723491, 4850084768085465, 49107197378659262, 499298960719688343, 5095861705240094097
Offset: 0
-
A369264 := proc(n)
add(binomial(3*n+3,k) * binomial(4*n-2*k+2,n-2*k),k=0..floor(n/2)) ;
%/(n+1) ;
end proc;
seq(A369264(n),n=0..70) ; # R. J. Mathar, Jan 25 2024
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1+x^2)^3)/x)
-
a(n, s=2, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A365842
Expansion of (1/x) * Series_Reversion( x*(1-x)^2/(1+x)^3 ).
Original entry on oeis.org
1, 5, 37, 325, 3141, 32261, 345605, 3818501, 43197445, 497868805, 5825331205, 69013667845, 826213203973, 9979713945605, 121472752156677, 1488482728148997, 18346810389299205, 227319830355640325, 2829629321065267205, 35369618935665131525, 443775430273133445125
Offset: 0
-
a(n) = sum(k=0, n, binomial(2*n+k+1, k)*binomial(3*(n+1), n-k))/(n+1);
A369270
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1+x^3)^3 ).
Original entry on oeis.org
1, 3, 15, 94, 657, 4902, 38233, 307953, 2541831, 21386810, 182754162, 1581699162, 13836248406, 122139271098, 1086638457429, 9733419373534, 87707244737511, 794505072627735, 7231017033165776, 66089527981542462, 606340568510978940, 5582088822346925210
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1+x^3)^3)/x)
-
a(n, s=3, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
A370098
a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(4*n-k-1,n-k).
Original entry on oeis.org
1, 6, 72, 978, 14016, 207006, 3116952, 47568618, 733189632, 11387193846, 177923724072, 2793666465090, 44042615547456, 696708049377294, 11053262513080440, 175800225426741978, 2802193910116429824, 44752001810800994022, 715924864099841086728
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n, k)*binomial(4*n-k-1, n-k));
A365844
Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1+x)^3 ).
Original entry on oeis.org
1, 7, 74, 931, 12894, 189798, 2913980, 46140347, 748022678, 12354604274, 207148525484, 3516699607022, 60328735646620, 1044182053141612, 18212018061261600, 319771572646888811, 5647677332549552870, 100266714048150595770, 1788366334642393259292
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*n+k+3, k)*binomial(3*(n+1), n-k))/(n+1);
A365845
Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^3 ).
Original entry on oeis.org
1, 8, 97, 1400, 22243, 375584, 6614508, 120136984, 2234022775, 42322629960, 813939319697, 15849232257824, 311858145053076, 6191083938051840, 123852349440862504, 2494251111318893400, 50526944132627936127, 1028872756710478785560
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*n+k+4, k)*binomial(3*(n+1), n-k))/(n+1);
A365622
Expansion of (1/x) * Series_Reversion( x*(1-x)^5/(1+x)^5 ).
Original entry on oeis.org
1, 10, 150, 2670, 52250, 1086002, 23533790, 525825830, 12026993010, 280220428890, 6627397194022, 158692955007390, 3839595257256330, 93725694152075010, 2305406918530451950, 57085385625207424342, 1421808255906105290210
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*n+k+4, k)*binomial(5*(n+1), n-k))/(n+1);
A379245
G.f. A(x) satisfies A(x) = ( (1 + x*A(x)^2)/(1 - x*A(x)) )^3.
Original entry on oeis.org
1, 6, 72, 1100, 18984, 352608, 6879152, 139012368, 2884353888, 61091682368, 1315450042368, 28709737064064, 633684940733696, 14120739728984832, 317243001537462528, 7178031348934793472, 163423203504309020160, 3741114809852278047744
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+3*k+3, k)*binomial(4*n+2*k+2, n-k)/(n+k+1));
Showing 1-10 of 14 results.