cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A370102 a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(5*n-k-1,n-k).

Original entry on oeis.org

1, 8, 128, 2312, 44032, 864008, 17282432, 350353928, 7172939776, 147972367880, 3070951360128, 64044689834760, 1341056098444288, 28176478479561992, 593725756425591680, 12542160174109922312, 265525958014053580800, 5632170795392966388744
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • Maple
    seq(simplify(binomial(5*n-1, n)*hypergeom([-n, -4*n], [1 - 5*n], -1)), n = 0..20); # Peter Bala, Jul 29 2024
  • PARI
    a(n) = sum(k=0, n, binomial(4*n, k)*binomial(5*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^4/(1-x)^4 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)^4/(1+x)^4 ). See A365847.
From Peter Bala, Jul 20 2024: (Start)
a(n) = binomial(5*n-1, n)*hypergeom([-n, -4*n], [1 - 5*n], -1).
For n >=1, a(n) = (4/3) * [x^n] S(x)^(3*n) = (4/5) * [x^n] (1/S(-x))^(5*n), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the sequence of large Schröder numbers A006318.
n*(4*n - 3)*(2*n - 1)*(4*n - 1)*(85*n^4 - 510*n^3 + 1138*n^2 - 1119*n + 409)*a(n) = 2*(29665*n^8 - 237320*n^7 + 794282*n^6 - 1443212*n^5 + 1544750*n^4 - 987560*n^3 + 363568*n^2 - 69168*n + 5040)*a(n-1) + (n - 2)*(4*n - 7)*(2*n - 3)*(4*n - 5)*(85*n^4 - 170*n^3 + 118*n^2 - 33*n + 3)*a(n-2) with a(0) = 1 and a(1) = 8.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and r. (End)
a(n) ~ (349 + 85*sqrt(17))^n / (17^(1/4) * sqrt(Pi*n) * 2^(5*n - 1/2)). - Vaclav Kotesovec, Aug 08 2024
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] (1-x)^(n-1)/(1-2*x)^(4*n).
a(n) = Sum_{k=0..n} 2^k * binomial(4*n,k) * binomial(n-1,n-k).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n+k-1,k) * binomial(n-1,n-k). (End)

A370097 a(n) = Sum_{k=0..n} binomial(3*n,k) * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 5, 49, 545, 6401, 77505, 956929, 11976193, 151388161, 1928363009, 24712450049, 318255628289, 4115300220929, 53396370030593, 694845537386497, 9064787191660545, 118516719269445633, 1552528215946035201, 20372392543502991361, 267736366910401413121
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^k*(-1)^(n-k)*Binomial[3*n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(3*n, k)*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^3/(1-x)^2 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)^2/(1+x)^3 ). See A365842.
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(3*n,k). - Seiichi Manyama, Jul 31 2025
a(n) ~ 3^(3*n + 1/2) / (5 * sqrt(Pi*n) * 2^(n-1)). - Vaclav Kotesovec, Jul 31 2025
a(n) = Sum_{k=0..n} 2^k * binomial(2*n+k-1,k). - Seiichi Manyama, Aug 01 2025
a(n) = [x^n] 1/((1-x) * (1-2*x)^(2*n)). - Seiichi Manyama, Aug 09 2025

A370103 a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n+k-1,k) * binomial(4*n-k-1,n-k).

Original entry on oeis.org

1, 1, 7, 28, 151, 751, 3976, 20924, 112023, 602182, 3260257, 17724928, 96766072, 529977917, 2910984412, 16027963528, 88440034711, 488918693466, 2707393587802, 15014647096172, 83380131228401, 463593653171495, 2580426581343200, 14377474236172320
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(2*n+k-1, k)*binomial(4*n-k-1, n-k));
    
  • PARI
    a(n, s=2, t=3, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial(u*n, n-s*k));
    
  • PARI
    a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial((u+1)*n-s*k-1, n-s*k));

Formula

a(n) = [x^n] 1/( (1+x)^2 * (1-x)^3 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1+x)^2*(1-x)^3 ). See A365854.
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n+k-1,k) * binomial(n,n-2*k).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*n+k-1,k) * binomial(2*n-2*k-1,n-2*k).

A370099 a(n) = Sum_{k=0..n} binomial(2*n,k) * binomial(3*n-k-1,n-k).

Original entry on oeis.org

1, 4, 32, 292, 2816, 28004, 284000, 2919620, 30316544, 317222212, 3339504032, 35329425124, 375282559232, 4000059761572, 42760427177696, 458259268924292, 4921911787962368, 52965710906750084, 570951048018417440, 6164049197776406180, 66639047280436354816
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(2*n, k)*binomial(3*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^2/(1-x)^2 )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)^2/(1+x)^2 ).
a(n) = 2 * A103885(n) for n >= 1. - Peter Bala, Sep 16 2024
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] (1-x)^(n-1)/(1-2*x)^(2*n).
a(n) = Sum_{k=0..n} 2^k * binomial(2*n,k) * binomial(n-1,n-k).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(2*n+k-1,k) * binomial(n-1,n-k). (End)
Showing 1-4 of 4 results.