cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365909 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+2) / (5*k+2)! ).

Original entry on oeis.org

1, 0, 1, 0, 6, 0, 90, 1, 2520, 72, 113400, 5940, 7484401, 617760, 681084014, 81081000, 81730916280, 13232419201, 12505020896160, 2639867731518, 2376002176470000, 633568693965570, 548870403972290401, 180329793856173720, 151492831528555510516
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+2)/(5*k+2)!))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-2)/5)} binomial(n,5*k+2) * a(n-5*k-2).

A365978 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+2) / (3*k+2) ).

Original entry on oeis.org

1, 0, 1, 0, 6, 24, 90, 1008, 7560, 54432, 712152, 7620480, 81130896, 1266632640, 17587441872, 246734377344, 4527397929600, 77238618702336, 1340945212763520, 28407941067018240, 574640938744314624, 11868502219930137600, 285787326567523173120
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\3, x^(3*k+2)/(3*k+2)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-2)/3)} (3*k+1)! * binomial(n,3*k+2) * a(n-3*k-2).
Showing 1-2 of 2 results.