cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365979 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(5*k+2) / (5*k+2) ).

Original entry on oeis.org

1, 0, 1, 0, 6, 0, 90, 720, 2520, 51840, 113400, 4276800, 47401200, 444787200, 9725086800, 58378320000, 2029897584000, 30450131712000, 475261239024000, 11952610750080000, 127796530736160000, 4683810971473920000, 90707397988727520000, 1964217505623310080000
Offset: 0

Views

Author

Seiichi Manyama, Sep 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+2)/(5*k+2)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-2)/5)} (5*k+1)! * binomial(n,5*k+2) * a(n-5*k-2).

A365908 Expansion of e.g.f. 1 / ( 1 - Sum_{k>=0} x^(3*k+2) / (3*k+2)! ).

Original entry on oeis.org

1, 0, 1, 0, 6, 1, 90, 42, 2521, 2268, 113742, 166321, 7543206, 16218930, 691242553, 2044833336, 83708046246, 324830941345, 12951273345282, 63596620804122, 2493395633726425, 15062005915534116, 584749646165678622, 4247497704703187089, 164155618660742879022
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\3, x^(3*k+2)/(3*k+2)!))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-2)/3)} binomial(n,3*k+2) * a(n-3*k-2).
Showing 1-2 of 2 results.