cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366448 Number of distinct characteristic polynomials for 2 X 2 matrices with entries from {0, 1, ..., n}.

Original entry on oeis.org

1, 6, 22, 58, 116, 221, 356, 573, 824, 1163, 1565, 2143, 2697, 3527, 4385, 5388, 6455, 7992, 9342, 11262, 12953, 15034, 17301, 20246, 22595, 25823, 29054, 32679, 36228, 41112, 44964, 50600, 55288, 60770, 66543, 72927, 78173, 86577, 93925, 101775, 108798
Offset: 0

Views

Author

Robert P. P. McKone, Oct 10 2023

Keywords

Examples

			For n = 1 the a(1) = 6 characteristic polynomials are {x^2, -4 + x^2, -2 + x^2, -1 + x^2, -4*x + x^2, 2-4*x + x^2}.
		

Crossrefs

Cf. A366551 (3 X 3 matrices), A367978 (4 X 4 matrices).
Cf. A058331 (determinants), A005408 (traces).

Programs

  • Mathematica
    mat[n_Integer?Positive]:=mat[n]=Array[m,{n,n}]; flatMat[n_Integer?Positive]:=flatMat[n]=Flatten[mat[n]]; charPolyMat[n_Integer?Positive]:=charPolyMat[n]=FullSimplify[CoefficientList[Expand[CharacteristicPolynomial[mat[n],x]],x]]; a[d_Integer?Positive,0]=1; a[d_Integer?Positive,n_Integer?Positive]:=a[d,n]=Length[DeleteDuplicates[Flatten[Table[Evaluate[charPolyMat[d]],##]&@@Table[{flatMat[d][[i]],0,n},{i,1,d^2}],3]]]; Table[a[2,n],{n,0,41}]
  • PARI
    a(n) = my(list=List()); for (i=0, n, for (j=0, n, for(k=0, n, for(m=0, n, my(p=charpoly([i,j;k,m])); listput(list, p))))); #Set(list); \\ Michel Marcus, Oct 11 2023
    
  • Python
    def A366448(n): return len({(a+d,a*d-b*c) for a in range(n+1) for b in range(n+1) for c in range(b+1) for d in range(a+1)}) # Chai Wah Wu, Oct 12 2023

Formula

a(n) <= A058331(n) * A005408(n) = 4*n^3 + 2*n^2 + 2*n + 1.
A058331(n) = 2*n^2 + 1 <= a(n). - Charles R Greathouse IV, May 08 2025

A366158 Number of distinct determinants of 3 X 3 matrices with entries from {0, 1, ..., n}.

Original entry on oeis.org

1, 5, 25, 77, 179, 355, 609, 995, 1497, 2167, 2999, 4069, 5289, 6841, 8595, 10661, 13023, 15777, 18795, 22305, 26085, 30397, 35107, 40381, 45929, 52247, 58929, 66287, 74139, 82767, 91643, 101701, 112013, 123235
Offset: 0

Views

Author

Robert P. P. McKone, Oct 02 2023

Keywords

Comments

These determinants a(n) equivalently represent the leading coefficient (coefficient of term with degree 0) of the characteristic polynomials for such matrices, thereby providing a direct measure and lower bound of the uniqueness of these polynomials within this matrix class.
The maximal determinant counted by a(n) is A033431(n) = 2*n^3.

Crossrefs

Cf. A058331 (distinct determinants for 2 X 2 matrices).
Cf. A365926.
Cf. A033431 (maximal determinant).
Cf. A097400 (distinct consecutive entries in 3 X 3 matrix).

Programs

  • Mathematica
    mat[n_Integer?Positive] := mat[n] = Array[m, {n, n}]; flatMat[n_Integer?Positive] := flatMat[n] = Flatten[mat[n]]; detMat[n_Integer?Positive] := detMat[n] = Det[mat[n]] // FullSimplify; a[d_Integer?Positive, 0] = 1; a[d_Integer?Positive, n_Integer?Positive] := a[d, n] = Length[DeleteDuplicates[Flatten[ParallelTable[Evaluate[detMat[d]], ##] & @@ Table[{flatMat[d][[i]], 0, n}, {i, 1, d^2}]]]]; Table[a[3, n], {n, 0, 9}]
  • Python
    from itertools import product
    def A366158(n): return len({a[0]*(a[4]*a[8] - a[5]*a[7]) - a[1]*(a[3]*a[8] - a[5]*a[6]) + a[2]*(a[3]*a[7] - a[4]*a[6]) for a in product(range(n+1),repeat=9)}) # Chai Wah Wu, Oct 06 2023

Extensions

a(19)-a(26) from Robin Visser, May 08 2025
a(27)-a(33) from Robin Visser, Aug 26 2025
Showing 1-2 of 2 results.