A365961 Number of (0,1)-matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums.
1, 1, 4, 19, 127, 967, 9063, 94595, 1139708, 15118010, 223571836, 3597458356, 63233950081, 1197193320701, 24418765771835, 532015160784016, 12363381055074017, 304754656068754421, 7952728315095555279, 218848562411197549582, 6338152295627215890669, 192627799720153909693048
Offset: 0
Keywords
Examples
The a(3) = 19 matrices: [1 1 1] . [1 1] [1 1] [1 1 0] [1 0 1] [0 1 1] [1 0] [0 1] [0 0 1] [0 1 0] [1 0 0] . [1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0] [1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1] [1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1] . [0 1 0] [0 1 0] [0 0 1] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
PARI
R(n,k)={Vec(-1 + 1/prod(j=1, k, 1 - binomial(k,j)*x^j + O(x*x^n)))} seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023
Extensions
Terms a(13) and beyond from Andrew Howroyd, Sep 23 2023
Comments