cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A035341 Sum of ordered factorizations over all prime signatures with n factors.

Original entry on oeis.org

1, 1, 5, 25, 173, 1297, 12225, 124997, 1492765, 19452389, 284145077, 4500039733, 78159312233, 1460072616929, 29459406350773, 634783708448137, 14613962109584749, 356957383060502945, 9241222160142506097, 252390723655315856437, 7260629936987794508973
Offset: 0

Views

Author

Keywords

Comments

Let f(n) = number of ordered factorizations of n (A074206(n)); a(n) = sum of f(k) over all terms k in A025487 that have n factors.
When the unordered spectrum A035310 is so ordered the sequences A000041 A000070 ...A035098 A000110 yield A000079 A001792 ... A005649 A000670 respectively.
Row sums of A095705. - David Wasserman, Feb 22 2008
From Ludovic Schwob, Sep 23 2023: (Start)
a(n) is the number of nonnegative integer matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums. The a(3) = 25 matrices:
[1 1 1] [1 2] [2 1] [3]
.
[1 1] [1 1] [1 1 0] [1 0 1] [0 1 1] [2] [0 2] [2 0]
[1 0] [0 1] [0 0 1] [0 1 0] [1 0 0] [1] [1 0] [0 1]
.
[1] [1 0] [0 1] [1 0] [0 1] [1 0 0] [1 0 0] [0 1] [1 0]
[1] [1 0] [0 1] [0 1] [1 0] [0 1 0] [0 0 1] [1 0] [0 1]
[1] [0 1] [1 0] [1 0] [0 1] [0 0 1] [0 1 0] [1 0] [0 1]
.
[0 1 0] [0 1 0] [0 0 1] [0 0 1]
[1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [1 0 0] [0 1 0] [1 0 0] (End)

Examples

			a(3) = 25 because there are 3 terms in A025487 with 3 factors, namely 8, 12, 30; and f(8)=4, f(12)=8, f(30)=13 and 4+8+13 = 25.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
        end:
    a:= n->add(add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k), k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k]*If[j == 0, 1, Binomial[i + k - 1, k - 1]^j], {j, 0, n/i}]]];
    a[n_] := Sum[Sum[b[n, n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}], {k, 0, n}];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz, updated Dec 15 2020 *)
  • PARI
    R(n,k)=Vec(-1 + 1/prod(j=1, n, 1 - binomial(k+j-1,j)*x^j + O(x*x^n)))
    seq(n) = {concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Sep 23 2023

Formula

a(n) ~ c * n! / log(2)^n, where c = 1/(2*log(2)) * Product_{k>=2} 1/(1-1/k!) = A247551 / (2*log(2)) = 1.8246323... . - Vaclav Kotesovec, Jan 21 2017

Extensions

More terms from Erich Friedman.
More terms from David Wasserman, Feb 22 2008

A370723 Number of symmetric (0,1)-matrices with sum of entries equal to n and no zero rows or columns, with weakly decreasing row sums and column sums.

Original entry on oeis.org

1, 2, 5, 14, 39, 123, 393, 1352, 4782, 17824, 68481, 274166
Offset: 1

Views

Author

Ludovic Schwob, May 18 2024

Keywords

Examples

			The a(3) = 5 matrices:
  [1 0 0]  [1 0 0]  [0 1 0]  [0 0 1]  [1 1]
  [0 1 0]  [0 0 1]  [1 0 0]  [0 1 0]  [1 0]
  [0 0 1]  [0 1 0]  [0 0 1]  [1 0 0]
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1;
    a[n_] := a[n] = Length[Select[Subsets[Tuples[Range[n], 2], {n}], Module[{matrix, rows, cols}, matrix = ConstantArray[0, {n, n}]; (matrix[[#[[1]], #[[2]]]] = 1) & /@ #; rows = Total[matrix, {2}]; cols = Total[matrix, {1}]; And[Union[First /@ #] == Range[Max @@ First /@ #], Union[Last /@ #] == Range[Max @@ Last /@ #], Sort[Reverse /@ #] == #, OrderedQ[Reverse[rows]], OrderedQ[Reverse[cols]]]] &]];
    Table[a[n], {n, 1, 6}] (* Robert P. P. McKone, May 19 2024, from Gus Wiseman in A135588 *)
Showing 1-2 of 2 results.