cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A181315 G.f. A(x) satisfies A(x) = Product_{n>=1} (1 + x^n*A(x)^n).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 227, 832, 3125, 11970, 46579, 183614, 731688, 2942673, 11928707, 48688888, 199932987, 825379993, 3423614756, 14261439594, 59635806865, 250241613688, 1053380320889, 4446989542144, 18823433444211, 79871578901283
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 227*x^6 +...
The g.f. A = A(x) satisfies
log(A) = x*A/(1-x^2*A^2) + (x^2/2)*A^2/(1-x^4*A^4) + (x^3/3)*A^3/(1-x^6*A^6) +...
		

Crossrefs

Programs

  • Maple
    nmax:=25: kmax:=nmax: for n from 1 to nmax+1 do A(x):=add(a(k)*x^k, k=0..kmax-1): A(x) := product((1 + x^k*A(x)^k),k=1..kmax+1): a(n-1):=coeff(A(x),x,n-1): od: seq(a(n),n=0..nmax); # Johannes W. Meijer, Jul 04 2011
  • Mathematica
    InverseSeries[x QPochhammer[x, x^2] + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
  • PARI
    {a(n)=polcoeff(1/x*serreverse(x/prod(k=1,n+1,1+x^k+x*O(x^n))),n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x*A+x*O(x^n))^m/(1-(x*A)^(2*m))/m))); polcoeff(A, n)}

Formula

G.f.: A(x) = Sum_{n>=0} A000009(n)*x^n*A(x)^n, where A000009(n) is the number of partitions of n into distinct parts.
G.f.: A(x) = (1/x)*Series_Reversion[x^(1/24)*eta(x)/eta(x^2)] (cf. A081362).
G.f. satisfies A(x) = exp( Sum_{n>=1} (x^n/n)*A(x)^n/(1 - (x*A(x))^(2*n)) ).
a(n) ~ c * d^n / n^(3/2), where d = A270914 = 4.50247674761735448773859393270078440676312875609162163346454... and c = A366018 = 0.482420439587319764659364391266849418507665645926542970519109122... - Vaclav Kotesovec, Aug 21 2018

A327280 Decimal expansion of a constant related to A270913 and A327214.

Original entry on oeis.org

2, 6, 0, 5, 4, 2, 2, 3, 3, 1, 4, 2, 4, 3, 8, 4, 6, 9, 4, 3, 3, 8, 6, 0, 8, 3, 2, 1, 6, 0, 4, 2, 2, 4, 8, 7, 6, 7, 6, 9, 0, 2, 0, 6, 0, 3, 9, 0, 8, 1, 6, 3, 0, 9, 2, 6, 3, 0, 2, 5, 9, 0, 1, 0, 2, 4, 1, 0, 3, 7, 5, 7, 2, 8, 9, 6, 2, 5, 4, 2, 2, 7, 8, 3, 5, 6, 5, 0, 8, 6, 0, 4, 0, 4, 4, 3, 1, 1, 4, 1, 0, 1, 0, 6, 2, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2019

Keywords

Examples

			0.26054223314243846943386083216042248767690206039081630926302590102410375728962...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Sqrt[s*Pi*Derivative[0, 2][QPochhammer][-1, r*s]]/r /. FindRoot[{2*s == QPochhammer[-1, r*s], r*Derivative[0, 1][QPochhammer][-1, r*s] == 2}, {r, 1/2}, {s, 1/2}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 02 2023 *)

Formula

Equals limit_{n->infinity} A270913(n) * sqrt(n) / A270914^n.

A366022 Decimal expansion of a constant related to the asymptotics of A109085.

Original entry on oeis.org

4, 8, 9, 6, 3, 5, 2, 2, 6, 6, 8, 4, 3, 0, 3, 3, 7, 3, 0, 8, 1, 5, 4, 1, 6, 6, 0, 5, 7, 8, 4, 6, 8, 6, 1, 9, 3, 2, 2, 4, 1, 6, 6, 2, 5, 1, 0, 1, 1, 5, 8, 7, 8, 4, 5, 4, 9, 4, 0, 6, 7, 2, 9, 9, 7, 0, 5, 7, 5, 8, 4, 1, 5, 7, 1, 4, 0, 1, 6, 8, 3, 2, 8, 8, 7, 0, 5, 2, 2, 9, 0, 1, 9, 6, 3, 9, 3, 8, 9, 9, 1, 7, 3, 2, 7, 6
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 26 2023

Keywords

Examples

			0.489635226684303373081541660578468619322416625...
		

Crossrefs

Programs

  • Mathematica
    val = -s*Log[r*s] / Sqrt[2*Pi*((-2 - 3*Log[r*s] + 2*Log[1 - r*s])* QPolyGamma[0, 1, r*s] + QPolyGamma[0, 1, r*s]^2 - 4*ArcTanh[1 - 2*r*s]*(Log[r*s] - Log[1 - r*s]/2 - r*(s/(1 - r*s))) - 2*(Log[1 - r*s]/(1 - r*s)) - QPolyGamma[1, 1, r*s] + r*s*Log[r* s]*((-r)*s^2*Log[r*s]* Derivative[0, 2][QPochhammer][r*s, r*s] + 2*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s]))] /. FindRoot[{s == 1/QPochhammer[r*s], 1/s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] == (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/(s* Log[r*s])}, {r, 1/5}, {s, 1}, WorkingPrecision -> 1000]; RealDigits[Chop[val], 10, -Floor[Log[10, Abs[Im[val]]]] - 3][[1]]

Formula

Equals limit_{n->infinity} A109085(n) * n^(3/2) / A270915^n.
Showing 1-3 of 3 results.