A366032 Difference d between the least odd integer that would disprove Gilbreath's conjecture and prime(n).
2, 4, 2, 10, 6, 10, 6, 6, 12, 16, 16, 16, 8, 12, 10, 30, 20, 26, 34, 20, 28, 18, 26, 30, 36, 24, 28, 26, 30, 88, 54, 68, 44, 64, 46, 46, 48, 40, 36, 52, 32, 64, 46, 66, 36, 66, 94, 72, 66, 76, 60, 54, 56, 70, 58, 66, 74, 72, 76, 56, 84, 80, 88, 70, 92, 104, 78, 86, 100, 84, 66, 86, 84, 86, 96
Offset: 3
Keywords
Examples
The first term of the sequence is a(3) = 2 (offset is 3) We start with the first 2 primes and instead of the third prime, we choose k=7. 2,3 --> 2,3,7 instead of 2,3,5 1 1,4 1,2 3 1 . k=7 is the least odd integer that disproves the conjecture. So, a(3) = k-prime(3) = 7 - 5 = 2. . 2,3,5,7,11 --> 2,3,5,7,11,23 instead of 2,3,5,7,11,13 1,2,2,4 1,2,2,4,12 1,2,2,4,2 1,0,2 1,0,2,8 1,0,2,2 1,2 1,2,6 1,2,0 1 1,4 1,2 3 1 k=23 is the least odd integer that disproves the conjecture. So, a(6) = k-prime(6) = 23 - 13 = 10.
Programs
-
Mathematica
Table[(k=Prime@n;While[Nest[Abs@*Differences,Join[Prime@Range@n,{k}],n]=={1},k=k+2];k)-NextPrime@Prime@n,{n,2,100}]
-
PARI
isok(v) = my(nb=#v); for (i=1, nb-1, v = vector(#v-1, k, abs(v[k+1]-v[k]));); v[1] == 1; a(n) = my(v = primes(n-1), k=prime(n)); while (isok(concat(v, k)), k+=2); k - prime(n); \\ Michel Marcus, Sep 28 2023
Comments