cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366033 Successive digits of consecutive terms of the prime-counting function A000720.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
Offset: 0

Views

Author

John M. Campbell, Sep 26 2023

Keywords

Comments

By analogy with the Copeland-Erdős constant 0.2357111317... given by concatenating the base-10 expansions of consecutive entries of the sequence of prime numbers, the so-called "prime-counting Copeland-Erdős constant" 0.0122...9101011... is defined similarly, but with the use of the prime-counting function in place of the prime number sequence.

Examples

			0.012233444455666677888899999910101111...
The prime-counting function evaluated at 1 is 0, so a(0) = 0, and the first digit after the decimal point of the prime-counting Copeland-Erdős constant is 0.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[IntegerDigits[PrimePi[n]], {n, 1, 57}]]
    Flatten[IntegerDigits[PrimePi[Range[57]]]] (* Eric W. Weisstein, Jun 07 2024 *)
  • PARI
    concat(0, concat(vector(50, i, digits(primepi(i))))) \\ Michel Marcus, Nov 04 2023