A366033 Successive digits of consecutive terms of the prime-counting function A000720.
0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
Offset: 0
Examples
0.012233444455666677888899999910101111... The prime-counting function evaluated at 1 is 0, so a(0) = 0, and the first digit after the decimal point of the prime-counting Copeland-Erdős constant is 0.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- John M. Campbell, The prime-counting Copeland-Erdős constant, arXiv:2309.13520 [math.NT], 2023.
- Eric Weisstein's World of Mathematics, Consecutive Number Sequences.
- Eric Weisstein's World of Mathematics, Prime-Counting Concatenation Constant.
Programs
-
Mathematica
Flatten[Table[IntegerDigits[PrimePi[n]], {n, 1, 57}]] Flatten[IntegerDigits[PrimePi[Range[57]]]] (* Eric W. Weisstein, Jun 07 2024 *)
-
PARI
concat(0, concat(vector(50, i, digits(primepi(i))))) \\ Michel Marcus, Nov 04 2023
Comments