cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366082 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1-x-x^2) ).

Original entry on oeis.org

1, 2, 6, 21, 79, 308, 1219, 4826, 18857, 71574, 257553, 837114, 2140496, 1379550, -35589730, -370646635, -2719034151, -17429175486, -103771133876, -588804389677, -3225403649859, -17180039158530, -89342552789741, -454604059204324, -2265246385921936
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-1)^k*binomial(n+1, k)*binomial(3*n-k+1, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+1,k) * binomial(3*n-k+1,n-2*k).

A369229 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^2)^2 ).

Original entry on oeis.org

1, 1, 4, 15, 65, 298, 1429, 7073, 35869, 185403, 973198, 5173644, 27797914, 150715321, 823541564, 4530609391, 25073291597, 139492998775, 779706274423, 4376600956063, 24659875131049, 139424357994344, 790763858547445, 4497788153203946, 25650342635871106
Offset: 0

Views

Author

Seiichi Manyama, Jan 17 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1-x+x^2)^2)/x)
    
  • PARI
    a(n, s=2, t=2, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u-t+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(2*n-k,n-2*k).

A366050 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1-x+x^2) ).

Original entry on oeis.org

1, 3, 16, 104, 750, 5769, 46373, 384885, 3273118, 28372354, 249762585, 2226782078, 20065651123, 182457467898, 1672073116401, 15427427247088, 143191280370438, 1336062703751262, 12524930325385008, 117910257665608080, 1114233543986585741
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(4*n-k+2, n-2*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(4*n-k+2,n-2*k).

A369230 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^2)^3 ).

Original entry on oeis.org

1, 0, 3, 3, 24, 54, 283, 900, 4098, 15286, 66555, 268173, 1156951, 4852722, 21007605, 90167059, 393152058, 1712432070, 7524092134, 33112353060, 146518404963, 649861681966, 2893369443183, 12913307575722, 57800647230933, 259298148600504, 1165967972216967
Offset: 0

Views

Author

Seiichi Manyama, Jan 17 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)^3/(1-x+x^2)^3)/x)
    
  • PARI
    a(n, s=2, t=3, u=3) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u-t+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(3*n+3,k) * binomial(n-k-1,n-2*k).

A372410 Coefficient of x^n in the expansion of ( (1-x+x^2) / (1-x)^3 )^n.

Original entry on oeis.org

1, 2, 12, 77, 516, 3552, 24891, 176647, 1265508, 9132530, 66288762, 483442434, 3539626635, 26002266656, 191556630375, 1414649524077, 10469628711396, 77630719516650, 576585458828844, 4288881479411395, 31945446999811266, 238233164413294792, 1778587750475510316
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=1, u=3) = sum(k=0, n\s, binomial(t*n, k)*binomial((u-t+1)*n-(s-1)*k-1, n-s*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(3*n-k-1,n-2*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * (1-x)^3 / (1-x+x^2) ). See A366049.
Showing 1-5 of 5 results.