A366073 The number of composite "Fermi-Dirac primes" (A082522) dividing n.
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := Floor[Log2[e]]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecsum(apply(exponent, factor(n)[, 2]));
-
Python
from sympy import factorint def A366073(n): return -len(f:=factorint(n).values())+sum(map(int.bit_length,f)) # Chai Wah Wu, Feb 19 2025
Formula
Additive with a(p^e) = floor(log_2(e)) = A000523(e).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} P(2^k) = 0.53331724743088069672..., where P(s) is the prime zeta function.
Comments