cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366135 Expansion of Sum_{k>=1} k^3 * x^k/(1 - x^k)^3.

Original entry on oeis.org

1, 11, 33, 98, 140, 366, 371, 820, 936, 1550, 1397, 3276, 2288, 4102, 4650, 6696, 5066, 10413, 7049, 13860, 12306, 15422, 12443, 27480, 17825, 25246, 25650, 36652, 24824, 51900, 30287, 54096, 46266, 55862, 52150, 93366, 51356, 77710, 75738, 116200, 69782, 137172
Offset: 1

Views

Author

Seiichi Manyama, Oct 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n * DivisorSigma[1, n] + DivisorSigma[2, n]) * n/2; Array[a, 50] (* Amiram Eldar, Dec 15 2023 *)
  • PARI
    a(n) = n*(n*sigma(n)+sigma(n, 2))/2;

Formula

a(n) = n * (n * sigma(n) + sigma_2(n))/2.
a(n) = Sum_{d|n} d^3 * binomial(n/d+1,2).
a(n) = Sum_{k=1..n} k*sigma_2(gcd(n,k)).
Sum_{k=1..n} a(k) ~ (Pi^2/48 + zeta(3)/8) * n^4. - Amiram Eldar, Dec 15 2023