cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366933 Expansion of Sum_{k>=1} k^4 * x^k/(1 - x^k)^4.

Original entry on oeis.org

1, 20, 91, 340, 660, 1836, 2485, 5560, 7536, 13280, 14927, 31360, 29016, 49924, 60390, 89776, 84490, 152496, 131651, 226520, 227066, 299420, 282141, 514080, 415425, 581776, 614070, 850864, 711776, 1226520, 928977, 1442400, 1362042, 1693064, 1644930, 2609076
Offset: 1

Views

Author

Seiichi Manyama, Oct 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, d^4*binomial(n/d+2, 3));

Formula

a(n) = Sum_{d|n} d^4 * binomial(n/d+2,3).

A366934 Expansion of Sum_{k>=1} k^5 * x^k/(1 - x^k)^5.

Original entry on oeis.org

1, 37, 258, 1219, 3195, 9597, 17017, 39338, 63189, 118580, 162052, 316974, 373113, 630959, 826320, 1262692, 1424702, 2353896, 2483414, 3912790, 4397862, 6003569, 6451293, 10240908, 10004850, 13819832, 15382332, 20810398, 20547109, 30847530, 28675527, 40458504, 41853306
Offset: 1

Views

Author

Seiichi Manyama, Oct 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, d^5*binomial(n/d+3, 4));

Formula

a(n) = Sum_{d|n} d^5 * binomial(n/d+3,4).
Showing 1-2 of 2 results.